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SYNOPSIS

The safety of a randomly excited bilinear hysteretic system is discussed
from the viewpoint of low-cycle fatigue process as well as of first excursion
over a specified barrier. The rasponse under a quasi-nonstationary filtered
shot noise is evaluated through a linearization technique. The reliability
function is computed by assuming a Poisson type for level crossings and the
Palmgren-and-Miner's hypothesis for fatigue accumulation. Comparison is made
between the above different types of failure to investigate the nonlinear

effect.
INTRODUCTION

Among structural failure mechanisms due to earthquake motions the first
passage failure or the response excess probability over a specified level
has extensively been studied. However, the repeated structural response be-
yond yield level may result in the so-called low-cycle fatigue damage. It
depends both on the nonlinearity and nonlinear response level either of these
two typical criteria governs the structural failure. For the about investi-
gation a structure whose restoring force is characterized by the bilinear hys-
teresis of Fig. 1 is subjected tou earthquakelike pilecewise stationary (quasi-
nonstationary) shot noise. The response analysis is carried out through the
linearization technique in random motion [5)] since the analytical solution
for such a system has yet to be found.

RESPONSE ANALYSIS

The motion of a bilinear hysteretic structure is described, when sub-

jected to base acceleration 2'(t), by

M"+28 0 +Q(M = - —&K-ILSY 1)
in which a nondimensional form is taken by using 'n—-? and T=w,t; the prime
denotes the time derivative with respect to T, and Wy —,/K/M is the natural
circular frequency of small response amplitude, B = C/ZN/KM is the small
amplitude fraction of critical viscous damping, M=mass, C=viscous damping
coefficient, K=initial stiffness, Q(7) = force-deformation characteristic of
Fig. 1 and y=yield level.

Modelling of the input acceleration is made in such a way that the fre-
quency contents appear similar to those of earthquake motions. Mostly for
this purpose a white noise n(t) is passed through a certain linear filter L

so that
Lly(t)] = n(t) (2)
in which
En(t)) = 0 En(t)n(t+am)] = 2ms (e)s(at) (3)

and E[ ]=mathematical expectation, 6( ) =Dirac's delta function and S alt),
giving the variation of mean-square intensity, is assumed as shown in Fig 2.
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The 2nd order differential operator is used herein for L.
: - d‘ d
L = grt2Bu, dt+w 4)
and the absolute acceleration is taken as the input acceleration to the
structure. By letting TB==y/uFY one can get

Z5(7) Y. 2
o = - zeg(—ﬁ)'n @M, (5)

Since the analyticaf solution of Eq. 1 due to random excitations is not
-available, the equivalent linearization technique [5] is adopted to evaluate
the response of original system. Such obtained linear system is governed by

"+ 28 (2‘-”-9)11'+(29-‘1)2n = -—5—2(7) (6)
eq  w, W on
in which 2
By ~ e( )+<—->*ﬁ<1 a)[l-erf(T)]( )(——) ™
®eq
w
(-ES)s = 1-(l-a)exp(l ---:) (8)
U.)O 201]

and cn'rmm displacement response and erf( ) =error function.

The equations of motion Eqs. 2 through 5, can be expressed, by intro-
ducing a state vector {u}l = {MosNy s n',M}, as

{u}+[plfu} = {Qln(v) (9
in which

(M o o ] ) ()

28, (—&> 5)* -+

(o] wo¥
S L R RO W

Yy By -29) (&4)3
_zac ) QY |2 Y 0
Lt o o ] -1 o 0

In order to compute the response covariance matrix [Ru]"E[{u]{u}T], which

plays an important role for the probabilistic response investigation, the

following method [4) is taken. Applying a unitary transformation to Eq. 9
fu} = [2]{r} (10)

with [&] composed of complex eigenvectors for [D], the response covariance
in complex modes is calculated by

“Ay (T=p) Ay (=) S8
E[{r}{r}"] = (] = j':te S e e 4 e (L)

and

[6(n] = 2ms_([#17*[{R}(} (817" a2)

When a staircase function is used to approximate the variation of Sn(T),
Eq. 11 can be performed step-by-step analytically and the result is
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-\, AT X.AT

= k| j 1
R . fe t'“r],r_ J+ 05 +>\m([G('r )
i+1
—ijtl —ijti
- fe Jlelr) 1l SO (13)
in which ATi= Ti+1— T and the initial condition is given from the response
continuity by - E~ . -1 T
R.1_. = [2] R, m ) (14)
=T T=Ti4 4T Tin

The response covariance in the original coordinates is obtained from

R,J = [er 1(2] (15)

LOW-CYCLE FATIGUE

The low-cycle fatigue test on yielding materials [3] suggests a certain
relationship between strain amplitude and number of loadings. Presuming a
similar relationship between structural deformation and number of loadings,

one may get _

a 1
4 (j.) = =

Te N

c

in which T=ductility response amplitude, T = ductility factor and a =con-
stant to be determined from experiments and structural analysis. This re~
peated loading result is extended into random loading due to earthquake mo-
tions. Assuming N, is a continuous function of ), the contribution of dN,

cycles with amplitude in (7T),T+dT) to damage can be evaluated from
dN

(16)

= <
S an
in which =
a_ - _B_EM_é'%z_Tﬂdﬁ = ~E[M (D Ip(f, (18

M(T,T), representing the number of peaks in that range, is given from the
heuristic approach, p (T}, T) = peak distribution and E[M_.(7)]= total expected
number of peaks per unit time which is approximated by the zero crossings
rate as below.

EQ (D] = I WO (19)

2n cn

in which op = rms velocity response and p==E[kk]/cncn. is the correlation
coefficient. The total fatigue accumulation during the response time T is
then summed up from the Palmgren-Miner hypothesis and is expressed, in view
of Egs. 16 through 19, as

T O ® =
(] =] 2 La-pos! (%)ap(ﬁ, afar (20)
Ll o

o
RELIABILITY ANALYSIS
The reliability function is defined for judging the structural survival

‘against earthquake motion. The first passage failure has been extensively
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investigated for linear structures, and the corresponding reliability with
unit initial condition is provided by

R( = expl- [ y(ndr] (21)

in which Y(7) is the rate of crossing of a specified response level. If the
Poisson process is assumed for crossing over a certain level B, as well as
the symmetric nature of response, :

= E[N' - 1% 1B,z Sexp{ - 20 (B
v(1) = 2E[N'(B,D] = ﬂ-c—n—exp[-z(cﬂ) ][cl—pz)zexp{-m(c—ﬂf}
1
s elBlyg e e IBl, 22
2 GT] { er [z(l_pa)];é UT] }] ( )

In this study the magnitude |B| is chosen as the Y times of the stationary
rms displacement Ogs 1.e. ®
L+482(g)° 3

R 1 (23)

i
B = = [——
l I Y O Y 4% T o
1- ) }“*BZ(E‘)E
g g
When the effect of low-cycle fatigue is taken into account, the availa-
ble ductility is decreased from T]F to T by

1y
Te = Tgl-EDD (24)
The crossing rate y(T) is found from 7’
Sed "R
W = [ e 1 0an’ - [T 1 Dan (25)
m -
Now that T[R= - |'1’]| may hold in view of the fatigue accumulation process [1,2],
one can get %
R(n) = expl-4{] ™77 knitpmlan+ [ B[N (0,mdr}]  (26)
o min(T, %)

in which 7° is the time when E[D(7*)]=1 is attained.
NUMERICAL EXAMPLE AND DISCUSSION

The response analysis of a .representative case of W, = 21, B°= 0.02 and
a=0.1 is carried out step-by-step through linearization process for a shot

noise passed through a filter L characterized by w, = 4m and B, =0.6. The time
increment is taken as 8t =0.025. Figs.3 and 4 show the co’rresponging rms responses.

The fatigue accumulation is investigated by using the data a =2 and
Mgp=15. The computation results for E[D] and R(T) are shown in Figs. 5 and 6.
Figure 7 compares the reliability of the structure with and without consider-
ing the fatigue accumulation. For the latter case the barrier is defined by
Eq. 23 in which Y is changed as 2, 2.5 and 3. It may be concluded from this
figure that the effect of low-cycle fatigue grows and becomes significant as
the response level increases much beyond Y, whereas the first passage failure
which disregards this effect determine the structural failure for small non-

linear response level.

595



REFERENCES

Lardner, R.W., "A Theory of Random Fatigue'", Journal of Mechanical

Pysics Solids, Vol. 15, 1967, pp. 205-221.

Minai, R., "On the Aseismic Safety of Building Structure", Bulletin of
Disaster Prevention Research Institute, Kyoto University, No. 13A,

1970, pp. 1l-17.

Ohji, K., Miller, W.R., and Marin, J.,

"Cumulative Damage and Effect

of Mean Strain in Low Cycle Fatigue of a 2024-T351 Aluminum Alloy",
J. of Basic Eng., Vol. 88, 1966, pp. 801-810.

Takemiya, H.,
of-Freedom Hysteretic Structure",

"Stochastic Seismic Response Analysis of A Multi-Degree-
Proceedings of Japan Society of

Civil Engineers, No. 245, 1976, pp. 17-26.

Takemiya, H. and Lutes, L.D.,

tic Systems", Submitted to the Journal
Division, ASCE.

Qlx)

<N

F1G. 1.~ RESTORING FORCE CHARACTERISTIC

s _exp [—c(u—T- ~t, )]
°

"Stationary Random Vibration of Hystere-

of the Engineering Mechanics

ot =0.1

‘B 2002

206
YNz Po

Wo/Wo s 2
/'VN- ~ 9/ Yo e
—— T~

YN=29 \%

YN228 ~
\
T~

o

v

o

P e ™~
YN=30 \\

] N =40l NN

/s

i

toT 40T T
T

FIG.3.- RMS DISPLACEMENT FOR FILTERED SHOT NOISE INPUT

FiG.2.- INTENSITY OF Si-.(‘r)

®TT

T

I3/
W%;_
118/

VWA

596

gofC T T

F1G.4.~ RMS VELOCITY FOR FILTERED SHOT NOISE INPUT



&

e uor 2 A0z
e =~ o-.o n.n._urxrnl/ T T T , . . "
/f/ //m._-z\»./ n._ug/ o._«,srfdn e
K % 0= 19 ——1 N / . / ’
/ . wny| 0 OE= 181
4 /4"2 44 .b SZ=181 -— / / ’
h $p02=18) —-- / / 4 /
/ \ — ounjog 7 —_ —
\ o1o4o- 0] 91=N/A ~ / / ,
/ ¥ 5o // \ N
i By a\
* /,. / o/v ﬂ@.—"2\> }//ly — / / /
/.. b ;/ - //v / /
\ 1 =N/A
— — " L\ h S _ _ // /// N % P’ :
11— ”/V $1=N/A o'2=NA SR NN /r
S N > 208 Tor 2 Nor DAL Lo
N 1 oo 1NdNI 3SION LOHS Q3NILT4 HO4 FOVAVA JALLYINNND ~'G'Old v
N \ i uoy 2 102 o
/.. gl=4 °
_J./.V/ \ i H”,.,.\,s | v /144
N 90=
N \ | ooy AV /
e /W. // o 1=N/A 1'0= 0 \\ k@ \\ \
- S— ~ .hl = ) ]
N —— o || 07 1]
\ 2Mm) 7Y A/ ’
/ Si= uﬁ — A \&\ \ \ =0
N O..Nn OM | \ \\ 4
'y 00- 0 ] = V\“ g vrs / \
- /»/ mw.__u2\>\ \\\\ \ \
l;/ AII \GME\\ L~ y \
™. L l/rl SZN l\\w.uzb_\\\ . \ \
N A el I A KD ”
[o}]

597



DISCUSSION

Rudolf Grossmayer (Austria)

The author has given a solution for the fatigue problem
of hysteretic structures under nonstationary earthquake load-
ings. In order to get information about crossing statitics
of the nonlinear structural response,; the nonlinear equations
of motions were solved by means of the equivalent lineariza-
tion technique. Because this method is not very well settled
for the nonstationary case.The discussor would like to comment
on this point. -What is the specified time interval, where the
parameters are assumed to be equivalent, and how great was the
time interval in the computation of the staircase approximation
of Sp(t) 2

It is well known that, in the case of a stationary input
motion, the equivalent linearization method can predict the
rmms value of the structural response very well, if the non-
linearity is small or moderate. However, as the probability
distribution of the response variable may particularly in the
tail deviate significantly from the Gaussian distribution, the
equivalent linearization method seems not to be adequate to
compute statistics of sample properties like crossing rates.
Therefore the discussor would like to know, if the author has
checked his results by any other means like simulation techni-
ques in order to verify the accuracy of his proposed method.

Author's Closure

Not received.
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