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SYNOPSIS

The earthquake ground motion is considered as a time-parameter
Gaussian stationary stochastic process defined by a power spectral
density function, psd, S(w). Based on the properties of the stochastic
processes and on the behaviour of linear systems, one obtains the
response spectra of a one degree of freedom system for the given S(w).
An iterative technique allows the conversion of a response spectrum
into the corresponding power spectral density.

RESPONSE OF LINEAR SINGLE DEGREE OF FREEDOM SYSTEMS

Response spectra and power spectral density functions have been
widely used to represent earthquake ground motion in terms of fre-
quencies. However, the two concepts are entirely different. While
the power spectral density is related to the Fourier analysis of the
ground motion, the response spectra considers the peak response of
a one degree of freedom system.

It seems very useful for reasons of comy: rison, to have some
technique that allows the conversion of one representation into the
other,

To compute the response spectrum R (n, Ty, w ) of a ground
motion described by the time history of acceleration "%k,(t), ost € T
one should proceed as follows(l)

t
Ry (1, T, wo)=max /; ha('r)i'{o (t-T)dr 1)
ot T
T
where:
Ty - total duration of the recorded earthquake;
Xo(t) - one component of the base acceleration;

w o - natural angular frequency of the oscillator;
U] = damping ratio of the oscillator;

ha,(t) - unit impulse response of the oscillator relative to the
displacement, velocity or acceleration (@=d, v, a).
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Assuming that %_(t) is a realization of a stochastic process, then R, is
a random variable with a suitable statistical distribution. ' '

In the particular case that %, (t) belongs to a stationary Gaussian
stochastic process with a power spectral density function S(w),the power
spectral density function of the response of a 0&3 degree of freedom
oscillator, SZ (w), under the action of % o (t) is

a

S7,4@) = |1 (w)|? s @) 2)

where H, is the complex frequency response of the oscillator., In
case of absolute acceleration, Hg (iw) has the form

wg + ]'.'1,'1')(1)(4)0
H, (iw) = 5

(wg -w2)+i'r17w w,

3)

" The peak or extreme value distribution of the resporise Z is ap-
proximately given by(3)

_ . T [A2 2
an(z)—Pr[Z<z]—exp{--§-7—t— —i—;—exp (-——2-%3)3 4)

where

p) =f00/12“5(1)d/1 5)
2n o y4 ‘

For the values common to the earthquake processes this distribution
is very narrow. The mean value of Z which is close to the median
and to the mode, and the variance of Z are approximately )

E [za]s[z Ao In (— \/—;-3-) - In (In 2)]1/2 6)

i T A2 ~
var [za}za,o [El (g /-1;—)+ p-ln (In 2)]_2A0 (0.21068) 7)

where E; (x) is the exponential integral function and p the Euler
constant = 0.57721(5),

In this paper, the response spectrum E [R,] is viewed as the
mean value of the extreme value distribution E [Z,] of the response
of a one degree of freedom system. One should emphasize at this
point that extreme-value distribution given by expression 4) takes
into account the randomness of the response for a fixed intensity of
excitation measured through S(w). It does not inclyde the randomness
in the intensity of excitation. For low risks (<107°) the final dis-
tribution considering both the randomness of intensity and the random-
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ness of response, has to be computed using the .distributions of intensity
and response and no longer it is valid to consider onl%/ét)he distribution
of intensity and the mean value of maximum IeSpOnset=/.

NUMERICAL IMPLEMENTATION

Response spectra using expression 6) were dfaveloped for any
shape of S(w). To cgmgyte the integrals in expression S)a.nurr.lencal
technique was used(7): (®). S (w) is represented by S'(w) which is de-
scribed by the ordinates at n points ; and linear segments between

those ordinates. The expression 5) can be writtén as
w

© n-1 k-+1
le =/ A8 g (A) dA = 3 f A0 Sk (A) dA 8)
nJo k-1 Yo,

where according to the definition of S' ()
S@I+H@- @) S, ) S@) /@ @) Hwgwa

S, @) = 9)
0 elsewhere

From here onwards we work in terms of absolute acceleration. True
values of spectral velocity and displacement can be obtained using the
complex frequency response for velocity and displacement in expression
2).

The values of the integrals on the right hand side of 8) can be
found in references (7):(8) and are not transcribe here.

Figure 1 illustrates the direct conversion of S (w) into response
spectra for power spectral density represented on the top right corner
of the same figure, This @sd is intended to represent the Taft earth-
quake (N-S, July 21/1952) ). The response spectra was drawn for an
oscillator with 5% damping ratio and a 15 sec duration. It also shows
the 5% and 95% fractiles of the extreme value distribution as wel], as
the response spectra of Taft earthquake computed by expression 1) 10),
Agreement between the probabilistic model and actual values can be
appreciated.

An iterative procedure developed to carry out the inverse
transformation from response spectra E [Ri]into power spectral density
S (w) can be found in detail in reference (11), Briefly, one choose a
set of frequencies w; ...w, with adequate bandwith given by

@ipp T A +20)
A flat spectral density (white noise S 1)y = S(@2)) = S(wy); provides
a first estimate of the psd. The spectral ordinates E Z;1 are com-
puted for the frequencies w. and compared with actual response spectra
E[Ri]. Then the psd of acceleration in the neighbourhood of @ ;: is
multiplied by a factor proportional to the square root of E [Ri] /ﬁ [zi1],
providing a new estimate of the psd of acceleration S@01)2,S€2)g ... Sy )o-
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After a few iterations, j, one can get estimations E[Zij] which are
only 1% off the prescribed values E [Ri] . Figure 2 shows the inverse
conversion from response spectrum into power spectral density., The
crosses are the prescribed response spectrum and the full line the
response spectra obtained for the computed power spectral density
shown on the top right corner. The prescribed values of the response
spectrum -correspond to the mean values of four earthquakes given by
Housner and ]ennings(12 .

Figure 3 presents the comparison between the four power spectral
density of acceleration Si;(w) mentioned in conection with Figure 2
and the common representation of S (w)

3
1

11.5 (1 +@? /147.8) S — cm? /sec

S (w) = ) 29 -
(1 -w” / 242)° +w* / 147.8 w— rad sec

CONCLUSIONS

Based on some results from the theory of stochastic processes, the
idealization of a strong motion earthquake as a sample of a time
duration T , of a stationary Gaussian stochastic process with zero
mean value and suitable power spectral density, allows to compute the
response spectrum of a single degree of freedom system under the
action of that earthquake.

Conversely, it is also possible, given a prescribed response
spectrum to find a corresponding psd of acceleration.

In spite of the limitations,not discussed herein, of the model of
earthquake ground motions used in this work (stationarity, normality,
duratiOnS),the relationships presented have been used to improve design
rules(13),(14) and are also useful in solving such problems as the
influence of soil conditions on response spectra and the generation of
time series with prescribed response spectra(11),(15),
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Fig. 1 - Transformation of the power spectral density of acceleration of
Taft earthquake (N-S, July 21/1952) [nto a response spectrum.
Comparison is made with the response spectrum computed direc
tly from the time-history of acceleration.
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Fig. 2- T of a respx P into a power spectral den
sity of acceleration, and verification of the inverse operation.
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Fig. 3 - Comparison between the average of four power spectral density
of acceleration S}, () and equation (15)
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DISCUSSION

Rudolf Grossmayer (Austria)

The idea of converting a response spectrum into a power
spectral density is a very fruitful one. As the discussor

performed a similar procedure it would like to recommend the .
authors a correction of equation (4). It turns out that this
equation does not describe the transient behaviouxr of the
structural response, which is important for structures with
long periods and relatively high damping values. In addition,
it would like to ask the authors, if they have also tried to
convert the response spectrum into a nonstationary spectral
density ? .

Authoxr's Closure

With regard to the question of Mr. Rudolf Grossmayer,
we wish to infomm that unfortunately, it was not sufficiently
emphasized in the paper that the mathematical analysis didn't
contemplate the transient behaviour of the oscillator. Accor-
dingly, equation 4, vwhich is only valid for stationary proce-
sses, should not be corrected.

The subject of probabilistic non-stationary models for
earthquake motion and associated transient response was dealt
with in the paper "A PROBABILISTIC APPROACH TO THE STUDY OF
LINEAR RESPONSE OF STRUCTURES UNDER MULTIPLE SUPPORT, NON-
STATIONARY GROUND SHAKING", Preprint, Vol. 3, page 3-385,
presented to this Conference.
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