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SYNOPSIS

A computer program gives the probability that u buildings in a region
will fail during a single earthquake. As input it is necessary to specify
the usual seismic risk parameters (source zones, recurrence rates, attenua-
tion laws) plus failure probability as a function of intensity of failure
for each type of building and soil condition. Z-transforms are used to com-
bine the several binomial probability distribution functions. An example il-
lustrates the application of the program and the effect of varying the para-
meters.

INTRODUCTION

When losses from earthquakes are averaged over the years, such losses
appear modest - at least in the United States - compared to those caused by
other natural hazards. However, earthquakes exceed other hazards in their
capacity to cause losses of catastrophic proportions in a few moments of in-
tense shaking that occurs without warning. Hence, in considering measures
to mitigate the earthquake haard, it is desirable to estimate the probabili-
ty that different thresholds of loss might be exceeded, in a city or a re-
gion, during any one single earthquake. Since any one earthquake may cause
different intensities of shaking within the city or region and different
types of buildings will respond differently to a given intemsity of shaking,
it is necessary to combine together several different sets of probabilities,
This paper describes a method of analysis developed for this purpose, with
focus on failures of buildings as an indirect measure of the potential
for fataldities.

THE MODEL
The model is logically divided into the following components:

— Definition of building types and a failure probability vector for
each type. The building types are based upon the quality of construction
of the structure and the type of soil on which it is built. Each type thus
indicates a general soil/structure response pattern. The failure probabili-
ty vector is based on the type of effect one wishes to measure and is a 2-
state measuring device (success or failure). Failure could be total col-
lapse, moderate damage or greater, a certain level of repair cost, or a mea-
sure of fatalities such as 50% or more of occupants killed. The failure pro-
bability vectors give the probability of a single structure failure for a =
set of MMI or ranges of ground accelerations. o

- Definition of the geometry of the region and the step size for spa=-
tial discretization, The entire region - seismic source zones and the tar-
get areas =~ is discretized into an equal-sized grid pattern
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The target areas can be spatially
fined and for each target cell
d soil) which are in

- Definition of the target areas.
distributed and need to have their geometry de 1
the number of buildings of each type {construction an
that cell must be given.

- Definition of the earthquake models. This consists of defining the
geometry of all source zones to be considered, the frequency of occurrence
and attenuation models, and the boundary conditions on epicentral magnitude
for each zone, and the step size for discretization of epicentral magnitude.

- Computation of the probability mass function and cumulative distri-
bution function of building failure over the target areas. The mass func-
tion gives the annual probability of n out of N buildings failing, where N
is the total number of buildings in the target areas and n = 0, 1,...N.

The cumulative gives the probability of n or more failing.

PROBABILITY COMPUTATION

Each building is assumed to be statistically independent of all other
buildings; thus, since we are dealing with a 2-state occurrence of each
building (failure or non-failure), our basic probability distribution is a
binomial. (For multi-state occurrences, such as 5 levels of building dam-
age, a multinomial distribution would be used.) For each event generated,
a distribution function for n of N buildings failing is computed. It is
multiplied by the probability of the event occurring (at an epicentral lo—
cation, of a magnitude interval) and these are summed over all magnitude
intervals in the magnitude range of interest and over all epicentral loca-—
tions (all cells in the source zomes), The computation of the distribution
function for n of N buildings failing, given an event, will now be described.

Let py(n,) be the probability of n, buildings failing given an event
(at a given location, of a given magnitude, with a given attenuation rate).
If we have only one target cell and only one kind of building in that cell
(i.e., the probability of failure of a single building is the same for all
buildings), then we have n
- (N o N-n
128 (no) = (n‘jp (1-p)" o
which is the standard binomial distribution function for ny, of N buildings
failing, given the probability of failure for one building = p. However,
when working with area (or distibuted) targets, one does not have this
kind of situation. Rather, one has more than one kind of building in a
cell as well as having different levels of ground shaking at different tar-
get cells. Hence, one has a total population with subgroups each of which
has a different failure probability caused by being of different kinds, or
receiving different excitation levels, or both. Thus, for any event, the
population of buildings will be a non-homogeneous set in that the probabil-
ity of failure varies from building to building. The distribution remains
binomial, however, in the following fashion.

.Since the failure curve (probability of failure vs, level of ground
Shak:!.ng) for each kind of building is discrete (by breaking the ground
shaking into intensity of acceleration ranges), the total population (given
an cf.vent) can be grouped into k homogeneous sets, each having its own pro-—
T?abllity of failure and each binomially distributed. Thus, since the build-
ings are assumed independent of one-another, the probability of n out of N
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failing can be written
pp @) = p (@ ,n0 ,-—,n )
| n o n o7 o, o
and is itself a random variable. The ith random variableof this set, Doj,
would have a binomial mass function pnj (noj) where noj = 0, 1, --, Ni- The
sum of all Ny = N@{ =1, 2, ——, k) the total number of buildings in all
target cells.

The combining of these k distributions can be performed by comvolution
or by discrete transform using the z-transform. The z-transform of binomial
mass function pnj (noj) is pp;T (2z4) and is given by

T o5 Lo
Pny (z1) = E(z;7) = 2 zi" Pn; (o.)
i i Vo4
e ni=0

where E (zi 1) is the expected value of the transform variable z; for dis-
tribution on ny. The coefficients of this polynomial, namel pni(nOi), are
the probabilities of exactly ngp; out of Nj failing in the ith grgup above,
i.e. they are values of the function for group i. Since our desired dis-
tribution is based on the sum of random variables, we apply transform theory
again to compute our random variable sum as the product of the transforms
of the individual variables. In other words, if

n, = nol + 0o, Fr—— Doy
is a sum of random variables, then its discrete transform is
T _ T T coe T (z)
pn, (2) = Pno, (2) Pa,, (2) Png,
N N N;
_ o1 Z% LI ; ok
= Py (nol) z _Pny noz) z ...:E:_ pnk(nOk)z
nol_ g 2"’0 nok—o

n
The coefficient of z © above is equal to our wanted probability, i.e. is e-
qual to p,(ng) or to exactly n, failing out of the total N.

This coefficient of z © can be computed as one of the terms in the
products of the polynomials from the transforms of the probability mass
functions of the k groups.

Thus the general procedure is to (given an event and an M)
a) Determine the number of homogeneous groups
b) Compute the probability mass function for each group.
c) Compute the product of the transforms of the k
mass functions as the polynomial products of
the k mass functions.
d) The coefficients just computed are the desired
probabilityp, (ny), n, = o, 1, ~—, N,

AN EXAMPLE
Eastern Massachusetts was chosen as an example, and 6 cities in that

area were defined as the torget areas of interest. The whole region (in-
cluding the 4 source zones) was discretized into 5 square cells, At this
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level, 5 of the cities were defined as 1 targetr cell each, and 1 was defined
as 4 target cells. Fig. 1 shows the area of interest with source zones and
target areas. One construction type (brick) and 2 soil types (good and bad)
were chosen and the number of buildings of each of the 2 types (brick on good
soil, brick on bad soil) in each target cell was determined. The numbers
of buildings used in the computations were the actual number divided by 20.
Table 1 shows the numbers used for each type for each target cell. Type 1
corresponds to good soil, type 2 to bad soil.

Failure probability vectors were specified for each type. Two classes
of computations were made., The first class had a failure defined as having
on the average 1% or more of the buildings occupants killed by an event,
the second class had a failure defined as collapse, with a large fraction
of the occupants killed. The failure vectors used are shown in Table 2,

Figures 2 and 3 show the computed probability functions for exactly n
buildings failing -~ Fig. 2 for class 1, Fig.3 for class 2, Fig,2 is truncated
at h = 700, TFig.2 shows the general type of curve which results from this
kind of computation. Since the basic distributions are binomial, the final
distribution will have combinations of binomials, evidenced by the cusps in
the curve. If the total number of buildings were large enough, each binom-
ial~like cusp would be a separate and distinct binomially-shaped curve. In
the one shown in Fig. 2, each cusp corresponds to the expected value of the
‘binomials from one event.

If the number of buildings is small with respect to the difference in
value of the failure probabilities for the MMI's, then all the cusps are
not distinct since one will overlap near the high point of the other. This
has happened in the curve in Fig, 3.

EFFECT OF CHANGES TO PARAMETERS

Changes to various parameters in the model can have different effects
on the final distribution. These are summarized here.

-~ Small variations in the rate of occurrence cause virtually no change
in the final distribution.

- Small variations (+ 10%) in the total population has little effect
on the final distribution.

- An increase in the total population causes more cusps to come into
view, a lowering of the probability of the expected value and an increase
in the spread of each binomial curve, an increase in the mode point (expec-
ted value). The shifting to the right of each binomial is a cumulative
shift to the right.

- Variations in the values in the failure probability vectors cause
major changes in the final distribution. This is caused by the change in
shape of the binomial when the value for p changes. As p goes from .l to
.5 to .9 the binomial goes from a right-tailed Poisson to a normal to a
left-tailed Poisson. The mode point also changes greatly, since mean = pN.
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CITY TYPE 1 TYPE 2
1 470 70
2 500 100
3 500 100
4 470 70
5 500 120
6a 500 200
6b 150 100
6c 600 370
6d 500 180

TABLE 1: Number of Buildings of Each Type
in Each Target Cell

Two Classes of Computations
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CLASS IYPE v VI Vi1 VIII
1 1 .0045 | .0545 .2 .425
2 .0092 | ,1565 +45 .8
2 1 0 0 .004 .0115
2 0 0 .0045 .0345
TABLE 2: Failure Probability Vectors for the
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