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SYNOPSIS

Seismic zoning is considered as a problem of optimization
of the distribution of the funds that a comunity devotes to
the prevention of the seismic risk. It is shown that the opti-
mum solution can be found through the repeated calculation of
the optimum distribution over two sites. A special control of
the model used for this calculation is carried out on the ba-
sis of decision theory, taking into account the uncertainties
in the quantitative definition of the hypotheses.

INTRODUCTICN

The problem considered in this paper is the optimization
of the distribution over a seismic area of the funds that the
community devotes to the prevention of the seismic risk. 1In
the seismic codes, the formula giving the intensity of the la~
teral forces contains in general many coefficients to which
the same intensity is proportional. Let C; be the coefficient,
at the point i, depending on local seismicity. As a first ap-
proximation we consider an area where only local seismicity
differs from point to point, while all the remaining conditions
(local soil conditions, shape of the response spectrum, social
and economical conditions, characteristics of the buildings,
etc.) are assumed as constant. Our problem, now, is the optimi
zation of the distribution over the considered area of the
coefficients Cj.

Let G be the total monetary cost per year of seismic risk pre-
vention over the area (considering both the cost of seismic
design and the cost of future damage due to earthquakes). The
following principle is here accepted: the distribution of the
coefficients C, must minimize the expected number of victims
over the area for a given value of G; i.e. starting from the
optimum distribution of the coefficients C; it must be impos-
sible to reduce the expected number of victims maintaining
constant the total cost G. If the area is divided into n small
portions which can be considered as points, we face the pro-
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where V. and D, are respectively the expected number of victims
and the total monetary cost of seismic risk preventlon at the
po:Lnt i per year. The optimum distribution Cl ceoe C for a
given G must then satisfy the following equations:
{v:l (c,) +)\D (c;) =0

ZiDi ;) ~e¢=0 (1=1....n)

(2)

where the prime is the symbol of derivative and A is a La-
grange's multiplier.

Consider one particular point, for instance pqint 1, as refe-
rence for all other points. It is easy to prove that the di-
stribution Ty .... C, satisfies the eq. (2) if and only if each
couple Ty, Tk (k = 2 .... n) satisfies the equations:

(0]

Vi + ' (3)
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In fact, if t" ""En is the solution of eq. (2), the eq. (3)
are 1dent1cally satisfied by each couple Cl, Ck Viceversa, if
each couple El' Ek satisfies eq. (3), the first set of n equa-
tions (2) is evidently satisfied; moreover, summing up the
last equations (3) for k = 2 ....n, we verify that the last
eq. (2) is satisfied.
It is also useful to point out that, if all the buildings at
the ‘E_ites 1 and k have the same characteristics, the solution
CT,, Cx of the problem (3) does not depend on the number of pexr
sons living at the two sites. In this case, in fact, if we
multiply by two arbitrary numbers ny and n, the population of
the two sites, the optimum solution is:
min [nl \21 (Cl) + ny Yk (ck)] (4)
with constr. n; Dy (C;)+ny Dy (Cp)=n; Dl('c"l)mk Dy (Ek);

and it is immediately verifiable that T;, Cp is the solution
of the problem (4) too.

With reference to a standard building it is then possible to
obtain the different optimum distributions El . 'En correspond
ing to different values of G in the following way. Fix an ar-

bitrary value for Cl at the reference site. For each k = 2...n,
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é¢liminate A from the first two eq. (3) and find Ek. Calculate

G =ZDi('é'i)., The set of values El' Ek (k = 2 ....n) is the opti
mum distribution for the total cost G.

In conclusion the optimum distribution of the coefficients C;
over n sites can be found through the repeated calculation of
the optimum distribution over two sites. As the number of per?
sons at each site is arbitrary, V; and D; can be expressed for
instance in victims/year/person and dollars/year/person.

CALCULATION OF THE OPTIMUM DISTRIBUTION FOR TWO SITES

The seismicity of a site is here represented by the follo-
wing correlation between the maximum ground acceleration ap
(measured in terms of g) and the return period T (measured in
years) :

In T (ay) = Té_ In a_ - fD— , (5)
where M, V' depend on the site.
As a numerical example, two sites A and B will be considered
with the following coefficients. Site A : MU= 3.270,V = 0.4;
site B : U= 2.365, V= 0.4.
A standard building is considered at both sites, defined by the
following characteristics. The additional construction cost due
to seismic design, d;, expressed as per cent of the construction
cost of the building, is: for ¢ £ 0.01, d; = 0; for C 2 0.05,
d; is a linear function of C defined by its values in C = 0.05
and in C = 0.1; for 0.01 <c¥ 0.05, d; is a cubic function
which connects the preceeding branches with regularity condi-
tions in C = 0.05. :
The peak ground acceleration aS corresponding to the collapse
of the building is given by the following "failure correlation":

a;'= oc+[%c : : (6)

The cost of direct damage (per cent of construction cost) caused
by an earthquake, 4 (ap, C), will begin to be appreciable when
ap .rises above a; =Y + €, and will grow in proportion with an
until reaching 100 per cent when aj = a;. Then the annual cost
of damage, dy, in per cent of the construction cost of the

building, is: 1 e V-1 V-1
(= % ___10Ve v VY
da(C)=- —d(am’c)d a %n" (1-y) (aC-a.) (a; - 4 ) (7)
0 m | m 1

The indirect costs d, are taken into account as a percent g of
direct cost:

a-Ea .
As far as the expected number of victims is concerned, the as-
sumption is made that V will be proportional to the number of
failures B

V=q-F,
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4
where the coefficient q is arbitrary, providec_i it is the same
at both sites. In fact the value of g has no influence on the

solution of eg. (3). .
From the described model we obtain the expressions of V and of

the total annual cost d@* in per cent of the construction cost:
M ~1A

ae @S (9)

(10)

a¥=1i4a, +a,+d,
where 1 -+ d; is the annual cost of dj. o
In the numerical example, assume the values of the coefficients
listed in the table I. Translate then costs and damage into dol
lars/year/person based on the following data: accomodation of
25 m“ per person; Italian market prices for 1975; 1 dollar =
850 liras; capital investment at 10 per cent p.a.; nominal life
of the building > 50 years. Using the conditions (1) for the
sites A and B, for each value of G it is possible to derive a
couple of values‘CA and Cg; i.e. the ratio CA/CB as a function
of Cp (fig. 1).
The numerical values assumed for the coefficie nts in Table I
are rather uncertain. In a previous researchlV it has been
shown that the uncertainty about the coefficients X andﬂ, de-
fining the failure correlation, is the most important one as
regards the reliability of the result of fig. 1.
A first control of the influence of this uncertainty on the fi-
nal result can be carried cut as follows. Consider a "pessimi-
stic" failure correlation, marked 1 in fig. 2, and an "optimi-
stic" one, marked 2. The "average'" correlation represented with
a detted line corresponds to the values of CC and ﬁ of Table I.
The extreme correlations 1 and 2 correspond to the values:

&

Xy = 0.5
If the calculation of CA/CB is repeated on the basis of corre-
lations 1 and 2, the results of fig. 3 are obtained (the dotted
;_ine is the same line of fig. 1, obtained from the average cor-
“&lation). The variations in the ratio Cp/Cp appear rather
“mall, but the control is not exhaustive. Consider for instance
{he correlation defined by X = OCl = 0.25 and ﬁ)= f52 = 8,
which is obviocusly included in the band between correlation 1
and 2. This new correlation could be proposed by the person who
is pessimist as regards the strength of the building without

Il

o5 ﬁl - ' (11)
B, =8

1V G. Grandori and V. Petrini: Comparative analysis of the
seismic risk in sites of different seismicity, to be pu-
Plished in Int. Journal Earthq. Eng. and Struct. Dynamics.
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seismic design and is optimist as regards the increase of
strength due to seismic design. The results obtained from this
correlation are marked 3 on fig. 3 and show not negligible va-
riations of the ratio Cp/Cy. For a more complete control it is
then necessary to consider all possible positions of the fai-
lure correlation in the band of fig. 2. through a probabilistic
approach. '

CALCULATION OF CA/CB BASED ON DECISION THEORY

Consider the coefficients Xand (2 as independent random
variables defined in the set A limited by (11) with the pro-
bability densities p(X), p(@). Then the expected number of
victims and the expected monetary cost are:

E (V) =ﬁAv(c,oc,B) pC) p(@) dor ap
E(M) =[[,D(C,0.R) pl) p(B) dot dp

In these conditions the decision criterion which is generally
accepted is:
min E(VA + VB)

with constr. E(DA + DB) = constant (12)

If there are no elements suggesting particular distributions
of p(®, p(B), it is spontaneous to assume that they are uni-
formly distributed in their intervals. In_this case the condi-
tions (12) lead to the .values of CA/CB represented with the
solid Iine in fig. 4, compared with the "deterministic" result
of fig. 1 (dotted line in fig. 4) obtained from the average
failure correlation. The differences are very small.

But even if we want take into account different distributions
p@©@), p(?) the variations in respect of the "deterministic"
result of fig. 1 remain rather small. Consider for instance
the distributions p (&), p(ﬁ) of fig. 5. The case I is the one
already considered, leading to the results of fig. 4. The case
II corresponds to the position, described before, of the person
who has elements in order to be’ pessimist about & and optimist
about 3, and so on. All the distributions of fig. 5 lead to
results which are contained in the band of fig. 6. The maximum
variation in respect of the "deterministic" result based on
the average failure correlation does not exceed 10%.
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DISCUSSION
Eli th Pate (U.S.A

In your minimization over the total loss, do you assume
fixed the total investment to be allocated for seismic effects
mitigation (Therefore fixing the upper limit of the gain* from
such an investment),’ (this in itself implies an "acceptable"
or "accepted" risk). How do you think this total investment
can be rationally fixed in the global frame of a general public
policy ?

Logs -~ Cost

Author'g Clogure

With regard to the question of Miss. Pate Elisabeth; we
wish to state that at present we deal with the problem of
the optimum distribution over a country of the resources
devoted to seismic risk prevention. The choice of the total
amount of these resources (i.e. the choice of the acceptable
seigmic risk) is a second step for which a wider approach
becomes necessary. For the moment we cannot offer any ratio-
nal suggestion for this choice.
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