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SYNOPSIS

This paper aims to make clear the ultimate resistance of reinforced
concrete structures with cantilever shear walls. For this purpose, a struc-
ture is assumed to be a system (Fig.l) composed of cantilever shear walls,
adjacent beams connected to shear walls, and frame elements. The ultimate
moment-shear interaction (Fig.12) of a story of such structures is clarified
theoretically by means of superposing the ultimate strengths of resisting
elements. Calculated moment-shear interactions are compared with test
results (Fig.l13).

INTRODUCTION

Multistory reinforced concrete buildings with cantilever shear walls
infilled in rigid frames are reasonable resisting systems against earthquake
load. It is important to evaluate the ultimate resistance of multistory
structures with cantilever shear walls for aseismic design. Several
researches [2][3][4][5] have been carried out to make clear the elasto-
plastic behaivors of such structures. However, an analytical method with
respect to the evaluation of the ultimate resistance of such structures is
not established in consideration of collapse modes of them.

The authors [1] presented the yield polyhedron of shear walls subjected
to axial force, bending moment and shear force. In this paper, the ultimate
moment-shear interaction of the multistory structures with cantilever shear
walls is developed theoretically on the basis of the superposition of the
ultimate strengths of resisting elements in structures. Calculated moment-
shear interactions of such structures are compared with experimental results

[2][3][4].
RESISTING MECHANISMS

Classification of Resisting Elements

In order to examine the ultimate resistance of multistory structures
with cantilever shear walls, these structures are considered to be a system
composed of cantilever shear walls, adjacent beams connected to shear walls,
and frame elements, as shown in Fig. 1. Equilibrium equations for these
structures are expressed [6], as follows (see Fig. 2):

Qg = Qs * Qg » My = My + My + Mgy a
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where Qoi : external shear force, Moi : external moment (= jgi on hj),
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Then, the following are assumed to represent characteristics of
resisting elements.

(1) Load-deformation relations of these elements are assumed to be rigid,
perfectly plastic.

(2) Adjacent beams and frame elements fail in only flexural yielding.

(3) The variation of axial forces and deformations in resisting elements
and N-A effects are not taken into account.

(4) Shear walls and columns are fixed on their foundations.

Characteristics of Resisting Elements

(Shear Walls) : A unit shear wall in a story of cantilever shear
walls infilled in multistory frames is subjected to axial force, bending
moment and shear force at the upper and lower boundaries. This shear wall
may be idealized into a truss model [1], which is composed of column ele-
ments and brace elements hinged at the upper and lower boundaries, as shown
in Fig. 3. Through this idealization, N .-M .-Q . yield polyhedron of shear
walls of the i th story is clarified anaY%tigélly [1], as shown in Fig. 4.

The axial forces (N .) acting on shear walls are assumed to be
restricted as N. < N . ¥N (see Fig.4). 1In such a case, M .-Q . inter-
action of shear'walls“dnder"Zonstant axial forces is obtained”Frofi'N .-M .-

v interaction, as shown in Fig. 5. Then, six segments of Mw:.L-Q‘(ci.in‘er‘i"1
altion correspond to collapse mechanisms and their compatible Conditions of
shear walls in Fig. 5. These collapse mechanisms can be considered to be
classified into two types, i.e., flexural yield type and shear failure type.
Yield moment (M .) and ultimate shear strength (Q _.) of shear walls, which
are representedw¥ﬁ Fig. 5, are obtained [1], as fol Tows :

Mwyi (0.5 Nwi - thyi - tNByi sin o ) lw (3

Quui = € chyi - thyi ) cos a (4)

where tNCyi =-a scy ( : tensile yield force of column elements),
thyi = -2 P, lw tw sin o scy s chyi = Be t, fc ( : tensile and
compressive yield forces of brace elements),
soy : yield stress of reinforcing steel,
a,S~ : cross sectional area of longitudinal reinforcements in column,
p_ : reinforcement ratio in wall,
fz : compressive strength of concrete,
Be : effective width of concrete brace elements [1].

) Then, the collapse modes of structures, in which the shear wall of the
i th story fails in flexural yielding or shear, can be shown in Fig. 6.

(A@jacent Beams) : Adjacent beams connected to shear walls have two
types, i.e., one is in the same plane as shear walls, the other orthogonal
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to them, as shown in Fig. 1. The states of load and deformation of these
adjacent beams are illustrated in Fig. 7. It is assumed that yield hinges
form at both ends of adjacent beams. Therefore, bending moment versus
rotation angle relations of these adjacent beams are represented in Fig. 8.
The bending moment is defined at the centroid axis of shear walls. Yield
moment (m__.) regarding two types of adjacent beams is assumed to be

expressed®as m__ . = (m_ . + . . . T yi

P gyi ( gpl)y [mg01)y , where (mgpl)y’(mg01)y yield
moments caused by adjacent beams in the same plane as shear walls and or-
thogonal to them.

If the axial deformation of shear walls is neglected, relations be-

. N )
tween rotation angles (¢gpi’¢goi) and flexural deformation (ewi) of shear

walls are expressed as ¢gpi = Lw ewi / 2 zp s ¢goi = zw e;i / 2 lo .

Therefore, from the assumption (1), in order to produce the plastic
deformation of adjacent beams, shear walls which are lower than these adja-
cent beams have to fail in flexural yielding (see Figs. 5 and 6).

(Frame Elements) : Frame elements of the i th story are represented
by a resisting element composed of columns and beams, as shown in Fig. 9.
It is assumed that plastic hinges at beams and columns adjacent to the
upper and lower beam-column joints form enough to sway this element (see
Fig. 9(b)). Load-deformation relations of this element are represented in
Fig. 10. Then, yield shear force (QcyiJ of this element is expressed as
Qcyi B CuMcyi * ndyi) / hy > where uMcyi’ndyi
beam-column joint. Therefore, yield shear force (Q. .) of frame elements
in the i th story is obtained as nyi =z Qcyi . fyi

: yield moments at each

The following two cases are necessary in order to produce the plastic
deformation of frame elements of the i th story. One case is that shear
walls of the i th story fail in either flexure or shear. The other case is
that shear walls which are lower than the i th story yield flexurally (see
Figs. 5 and 6).

ULTIMATE RESISTANCE AND COLLAPSE MODES

Moment-Shear Interaction of Adjacent Beams and Frame Elements

Collapse modes with plastic flexural rotation (6.) and/or story sway
(R.) of cantilever shear walls at the i th story are taken into account to
evaluate the moment-shear interaction of adjacent beams and frame elements
between the i th and the n th story (see Figs. 5 and 6). That is, this
moment-shear interaction can be obtained as vectors ( + (M_ .+ML .) , 0)

2 - Vgyl fyi

and vectors ( + MZ . , + nyi )

fyi
here M g m M2
whe .= L. . .
gyi j=i gy fyi

= 5=idi Uyi By 0 ME3 = Qi By 0 )

as shown in Fig. 11.

Moment-Shear Interaction of Structures at the i th Story

The moment-shear interaction of structures in MO.—Qoi plane of.M .>0,
Q i>0 can be obtained in consideration of collapse mddes Shown in Fig.”6 of
structures in which shear walls of the i th story fail in flexure or shear,
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as shown in Fig. 12. Then, yield moment (M _.) and ultimate shear force
: oyi
(Qoui) are obtained, as follows:

Moyi = My * Mayi *Meys o Qoui = Qi * Uy (6)
where M. . = M + M2 . =

fyi = Mayi M T ki Qe b

Similarly, the moment-shear interaction of structures in the whole
region of M_.-Q . plane is obtained, as shown in Fig. 12, Then, this
moment-shea? inféraction can be interpreted also by the superposition prin-
ciple [7], i.e., this is obtained as an enveloped polygon by superposing
the ultimate moment-shear interaction of each resisting element in struc-
tures (see Figs. 5, 11 and 12).

n
A shear span (hoi) at the i th story is defined as hoi“ jéi on hj/Qoi'
If the structures are subjected to lateral loads with the following two
regions of the shear span (h _.), the structures fail at the i th story with
two collapse modes shown in ?%g. 6, i.e., with shear walls of flexural yield

type and shear failure type.

Moyi/Qui € Pog < Moyi /ey

hi - Moyi/Qoui < hOi < Moyi/Qoui : shear failure type.

flexural yield type,

Yield shear force (Q

:)
N : s oyi” flex. -
ural yield type is obtain8i'as ?aoyi)flex. = Moyi / hoi

of structures with shear walls -of flex-

Moment-Shear Interaction of the Whole System of Structures

The yield moment (M__.) and ultimate shear force (Q _ .) at each story
are transformed into yie?&lmoment (Mb .) and ultimate shear force (Q,_ .) at
the base story according to the dist %vely.

rX%utiQn of lateral loads, respeg%
Then, the moment-shear interaction of the whole system of structures is
obtained as the minimum of Mbi—Qbiinteractions of every story.

COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATED VALUES

Calculated values are compared with experimental results of structures
with cantilever shear walls of flexural yield type and shear failure type.
Then, yield moments of beams and columns in structures are calculated by
the analytical method [8]. The effective width of a concrete brace element
in the truss model is assumed to be 0.2 £ cos o [1]. The tensile ultimate
strength of reinforcing steel is neglecteﬁ in the analysis in the foregoing
chapters, but in this chapter it is considered in the calculation.

However, the compressive ultimate strength of steel is neglected.

The summary of tests [2][3][4] is presented in Table 1. Experimental
results are plotted in M -Q._ planes, as shown in Fig. 13. Since the ulti-
mate strength of reinforcing steel is not described in the original docu-
ments [3][4], its assumed value is applied in the calculations.

The failure modes of shear walls in the structures are classified into
the flexural yield mode and the shear failure mode by the broken line in
Fig. 13(a). Similarly, the broken line in Fig. 13(b) represents the bound-
ary of the following two failure modes of them. In the first mode, shear
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walls may fail in shear after the yielding of reinforcements of a tensile
column element. In the other mode, these may not fail in shear. The test
values of the ultimate moments of the structures with shear walls of flex-
ural yield type are somewhat higher than the calculated yield moments, but
coincide well with the calculated ultimate moments. The test values of the
ultimate shear capacities of the structures with shear walls of shear fail-
ure type coincide well with the calculated ultimate shear capacities.

CONCLUDING REMARKS

The resisting elements in reinforced concrete multistory structures
with cantilever shear walls are classified into cantilever shear walls,
adjacent beams and frame elements. The moment-shear interaction of the
shear walls under constant axial forces is obtained through the idealization
of the shear walls into the truss model (Fig. 3). Then, the ultimate moment
-shear interaction (Fig. 12) of the structures is clarified theoretically
by summing up the moment-shear interactions of shear walls, adjacent beams
and frame elements in consideration of collapse modes of structures (Fig.6).
The calculated moment-shear interactions are compared with the experimental
results [2][3][4] of the structures subjected to lateral loads (Fig. 13).

It is shown that the coincidence between the calculated values and the test
results is reasonable. Therefore, this analytical method may be useful for
the aseismic design of the multistory buildings with cantilever shear walls.

This research is carried out under the guidance of Prof. Dr.-Ing.
Minoru Yamada in his laboratory in Kobe University.
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Table 1 SUMMARY OF TESTS [2][3][4]
Ref.| Speci.|Struc.| Total |No. of |Failin
P Loading £ H, H
No. Type | Story |Points |Story A U
2] |24 A 1 1 1 st Type & %
Type B
5-12 2 2 1 st
B 2 1" | 2nd 7 7%
n 7 7/
[3] H3 - % %/ W%
14,15} B,C 3 1* 1 st 7 % 7
[4] {16-19| D 1,2,4,8] 1 1 st Type C Type D
* Loaded at ‘the top ‘of structures.
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Fig.13 COMPARISON OF TEST RESULTS [2][3][4] WITH CALCULATED VALUES
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