INFLUENCE OF RESTORING-FORCE CHARACTERISTICS OF BRACES
ON DYNAMIC RESPONSE OF BRACED FRAME

Michio SHIBATAI

SYNOPSIS

Dynamic response analysis of a single-story braced frame is presented.
The hysteretic characteristics of the bare frame is assumed to be bi-linear,
and the restoring-force of braces is evaluated by the hysteresis function
proposed by the author and/or computed by the detailed numerical method.
Both results are in good agreement, and it is confirmed that the proposed
restoring-force function of a single brace can be applied to the response
analysis with enough accuracy.

A parametric study using the proposed function shows that the ductility
response of the braced frame much depends not only on the brace slenderness
but also on the strength ratio of columns to braces.

INTRODUCTION

Braces play an important role on the earthquake resistant property of
a steel structure. So, it has been desired to develope the simple and accu-
rate mathematical expression, which approximates well the actual hysteretic
behavior of steel braces. Formulated expressions should realize the follow-
ing properties: 1) The axial force of a single brace subjected to random
displacement history is explained as the explicit function of the axial dis-
placement, and 2) the deterioration of strength and rigidity during the re-
peated loading, which is characteristic of steel braces, is precisely esti-
mated. The author and others proposed the mathematical expression of the
hysteretic rule of a single-brace at the 6 WCEE (1), which seems to satisfy
the above mentioned properties better than other proposals. Although it was
confirmed that the proposed formula well approximates the static test re-
sults of single brace under alternately repeated load, it must be certified
that the proposed function can be applied to the dynamic response analysis
with enough accuracy.

In this paper, dynamic response analysis of a single-story braced frame
is presented where the hysteretic characteristics of braces is evaluated by
the detailed numerical analysis (2), and the results are compared with the
solution where the restoring-force of the brace is estimated by the proposed
hysteresis function. A parametric study using the proposed function is also
performed and the influence of the restoring-force characteristics on the
maximum response is discussed.

HYSTERETIC BEHAVIOR OF A SINGLE BRACE

Formulated loop Based on the proposed hysteresis function (1), shown in
Fig. 1, the non-dimensional axial force n of the brace is expressed as the
single-valued continuous function of the non-dimensional axial displacement
8§, untill the next unloading occurs, provided that the characteristic points
A, B, P and Q, in Fig. 2, are determined at the latest unloading point.
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where is the ratio of the Euler load of the brace to the limit axial
force, and n, is the solution of the following equation.
3 2 - 2
Pyrn + Py 1 =0 (2)

At the unloading point, the characteristic points A, B, P, Q and the
auxiliary characteristic points C and D in Figs. 3(a),(b) should be defined
again. Fig. 3(a) shows the case of the unloading at Stage B,
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the case of the unloading at Stage C is shown in Fig. 3(b),
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and the case of the unloading at Stage A is expressed as follows,

st=sf =5, o065 -1on, ofo1, a0 =

where ql, q2 and q3 are the constants.
9 = O.SX/nE +0.24 < 1, q, = 3 - l/nE)/lO, qq = O.llS/nE + 0.36
The initial values of these parameters are as follows.
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Numerical method The practical method of evaluating the precise hysteretic
characteristics of a single brace (2) is summarized here. A simply supported
bar is idealized into the model, shown in Fig. 4, which is composed of two
straight segments and a bending portion. Assuming that the curvature of the
midsection is distributed uniformly over the bending portion, the non-dimen—
sional increment of the axial strain de of the centroid at the midsection
and the non-dimensional axial-force increment dn are obtained as follows.

de = C,dk + Cz~(dk)2/(1 + C-dk) 3)
dn = (C,-K + p-§)edk + cz.z.(dk)z/(l + C-dk) )
n I+ p*k+S +n C,+A + p-§ A
_ c 1
€=~ - — Cy=-————, C= —— -
k*A + n S k*A + n S k*A + n -8
[} Cc C

where dk is the increment of the non-dimensional curvature k of midsec-
tion, n, is the ratio of the elastic buckling load of the model to the

limit axial force, A = [ u dA/A, § = f yeu dA/Zp and I = f yz-u dA/1

are obtained by integrating the ratio u of the tangent modulus of each fi-
ber element of the midsection to the Young's modulus, over the cross-sectio-
nal area, vy denotes the distance of each fiber from the centroid, and

p = Zi/(A-I) is determined by the cross-sectional area A, the plastic sec-

tion modulus Zp and the moment of inertia I of the midsection.

In the actual calculation Z, S and I are computed by dividing the
midsection into finite number of strip elements, assuming the uniform dis-
tribution of u in a strip.. Provided that the stress-strain relatiomship
is piecewise linear, A, S and I varies_discretely with time and Egqs. 3
and 4 are valid for each period while A, S and I keep constant. In
order to carry out the accurate step-by-step computation, it is necessary to
follow each step when the stiffness distribution of midsection changes.

The non-dimensional increment of the axial displacement of member ends
is composed of three components, the elongation of the straight segments
dGR, that of the bending portion dGB and the axial component of the change
in geometry dSG.

ds = dsR + dsB +ds, (5)
dGR = (1 - s)-deR, dﬁB = g-de
a5, = p/(6-nc)-d(k2) = p/(6°n )+ (2+k + dk)-dk

where s is the ratio of the length of the bending portion to the bar length
and de is the increment of the normalized axial strain of straight seg-

R
ments.
L ¢, k- (an)*
dey = dn/ug = {(C K + p-8)-dk + ———— }/up (6)
1 + Cedk
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Computed results using the stress-strain relation, shown in Fig. 5, are
compared with the experiments (3), in Figs. 6(a),(b). Both are in good
agreement. = The hysteresis loops obtained theoretically are composed of fi-
nite number of curves with corresponding branching points, and can be approx-
imated, without loss of accuracy, by the piecewise linear relation composed
of .straight lines connecting each branching points.

RESPONSE ANALYSIS

Fig. 7 shows a part of the piecewise linear hysteresis loop. The ordi-
nate denotes the ratio £ of the restoring force F to the reference value
Fo’ and the abscissa corresponds to the ratio & of the relative displace-
mént x to the reference value x . Let f and g represent the non-
dimensional restoring force and stiffness at"time T = T,, respectively.

The equation of motion of the undamped system, in the vicinity of <t = T
is written as

2
d7g 9
E;E-+ mo-{g-dg + £+ ye¢(t)} =0 (7

where w_ denotes the circular frequency of the elastic vibration, ¢(t) is
the norm3lized ground accelerogram and vy dis the ratio of the maximum ground
acceleration to the yielding level (Fo/Me).

If ¢(tr) is expressed by the p-th order power series of time increment
P

t as ¢(Tl +t) = I ar-tr, the relative-displacement increment dg and
r=0
the velocity £ at time T = Tl + t 1is obtained as
14
dg = x br-tr +b {1 - cos(u-t)} + b/w-sin(w-t) (8)
r=1 °
. P r-1
E = 2~r-br-t + bo°m-sin(w-t) + becos(w-t) 9)
r=1
where
0 : r>p
br = 2
—{Y-ar + (r + 2)-(r + l)-br+2/mo}/g : l<rz<p
2
= - + e .
b (fl Yeag + 2 bz/wo)/g
_ 2 _ 2,
b =¢§ £=0 bl’ W= wog

Eqs. 8 and 9 are valid for finite time increment, provided that the sign of
the velocity does not change, and that the displacement increment d& does
not exceed the necessary increment df for the stiffness change, shown in
Fig. 7. 1If one of these conditions is violated, substituting d& or 0 to
the left member of Eqs. 8 and/or 9, and solving it, the necessary time incre-
ment is obtained for the subsequent stiffness change and/or unloading. At
the point of the stiffness change or the unloading, calculating the stiffness
and the subsequent point of the stiffness change, the step-by-step computa-
tion should be continued. '
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COMPUTED RESULTS AND DISCUSSIONS

oy thzhzoig:d;i::piac;yentsrelatiOP under monotonic loading is illustrated
by th ! 1€ 0 Y1g. O, assuming that the hysteretic characteristics of
are frame is bi-linear with hardening ratio u_, and that the restoring
?orce of the total system is evaluated by the simplé summation of the restor-
ing fo?ces‘of each structural elements. In the figure, components of the
restorlng force shared by each Structural elements are also illustrated by
dashed line and dotted lines, defining the strength of the system with the
brace of 0 length, F =TF o + 2+F , and the corresponding displacement x
as the reference values, respectiveiy. It is also assumed that the displace-

ment at which the column attains its yield limit is twice the displacement
at which the tension brace yields. )

In Fig. 9, the computed results of the response analysis to the El
Centro 1940 NS accelerogram at which the brace~restoring forces are evalu-
ated by the proposed restoring-force function are compared with the precise
solution where they are calculated through the detailed numerical procedure.
The fundamental period is set as T = 0.5 sec., the ratio of the maximum ac-
celeration of the ground input to the yield level of the system as y = 2,
the hardening ratio of the bare frame as p_= 0.05, the slenderness parame-
ter of braces as n_ = 1, and the ratio of the strength of the bare frame to
the reference strength as o = F_ /F =0, 1/5 and 1/2. The shape of the
hysteresis loop much depends on a., 8nd the response is also dependent on
a.. The results at which the bracé-restoring forces are evaluated by the
pr?posed function are in agreement with the precise solutions, and the devi-
ations are very small if a_ > 1/5. Therefore it is confirmed that the pro-
posed restoring-force function of a single brace can be applied with enough
accuracy to the dynamic response analysis of braced frames.

In Figs. 10 - 13, the results of a parametric study using the proposed
hysteresis function of brace are shown. Fig. 10 shows the hysteresis for
n,=1, 4, u.=20, 0.1 and a. =0, 1/5, 1/3, 1/2, 2/3, 4/5, respectively.
Tﬁe other parameters and the input ground motion are the same as the case of
Fig. 9. D, = 1 approximately corresponds to the slenderness ratio X = 90
and n_ =4 to A =45 for mild steel. The shape of the hysteresis loop
depends not only on n_ but also on a,, and the dynamic response much de-
pends on the hysteretic characteristics. TFor a_ < 1/2, the hysteresis loop
and the dynamic response are mainly dependent on and the effect of u
is little. For larger values of a_, the characteristics of the bare frameé
predominates and the effect of yu, "plays an important role. In the case of
n, = 1, the deformation drifts in the negative direction for o ;:1/5, and
for o, = 1/2 the deformation is almost symmetric with respect to the ori-
gin ang the maximum response takes the minimum. For a_ > 2/3, the influence
of the characteristics of the bare frame dominates, and the shapes of the
hysteresis loops are similar to the bi-linear type, but the maximum response
is larger than that for o, = 2. In the case n, = 4, the deformation is
almost symmetric with respéct to the origin for small values of a and the
drift of the deformation in the negative direction is cbserved for large ae
values. The maximum response takes the maximum for a, = 1/2. For a_ >
2/3, as the effect of the bare frame predominates, the hysteresis loop
and the response characteristics are similar to the case of np = 1.
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Fig. ll shows the relationship between the ductility responses of braces
g, = ]xl XH and o., and corresponding load-displacement relations under
monotonlc #¥0adf Ing are shown in Fig. 12. The thin dotted lines in Fig. 11
denotes the response of the elastic-perfectly plastic system, and the devia-
tion of the present results from these lines denotes the influence of the
hysteretic charcteristics. The ductility response of a column is one half
of that of the brace. The other parameters and input ground motion are the
same as the case of Fig. 10. If the slender braces are used (n_, = 0.5 or
1), &, decreases monotonically with the increase of ag for d_. < 1/2.
For large values of o_., .. becomes uniform at u, = 0. l but in the case
of u_. =0, g, takes larger value than for a, = E/Z although the load-
displacement relation under mcnotonic loading sﬁows more favourable shape
for a 2/3 or 4/5 than for a_. = 1/2. In the case of n_ = 2 and/or 4

taﬁes the maximum in the vicinity of 1/2, and for o,
cgmes small with small values of o In tﬁe case of ng = the hysger—
etic property of the brace is assumed to be bi-linear an the total behavior

is tri-linear, as shown in Fig. 12(f). The effect of comes at its max-
imum at ap = 2/3, and is almost negligible for o £ 1/5 and n; < 2.

r, vs. n, relations are shown in Fig. 13. 1In the case of a_ < 1/3,
z. becomes large for small n_, and this tendency is remarkable £for small

a. value. In the case a_. = 1/2, ¢, takes the maximum at n_, = 4, on the
contrary z values at n,. = 4 are very small for < 1/2. "In the case
= 2/3 ang 4/5, incCreases with the decrease of oy for np > 2, and
;b takes almost consgant value for ng = 1.
CONCLUSIONS

Dynamic response analysis of a single-story braced frame is presented.
The hysteretic characteristics of the bare frame is assumed to be bi-linear,
and the restoring-force of braces is evaluated by the hysteresis function
proposed by the author and others and/or computed by the detailed numerical
method. Both results are in good agreement, and it is confirmed that the
proposed restoring-force function of a single brace can be applied to the
response analysis with enough accuracy.

A parametric study using the proposed function shows: 1) The ductility
response of the braced frame depends not only on the brace slenderness factor
oy but also and much on the strength factor o of the bare frame portion.

2) Although the load-displacement relation of a braced frame under monotonic
loading shows favourable tendency for large values of n_ and o_., the duc-
tility responses often become large for rather large values of n_ or o_..
3) Slender braces are inappropriate for structures with small ao_.  values,
where the earthquake resistant property much depends upon braces.
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