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SUMMARY

The equation of motion for linear structural systems is derived for the
general case of seismic vibrations and using this equation the maximum
value of a specified effect and the corresponding seismic direction is
determined. A numerical procedure is given for the calculation of the
largest maximum value together with the corresponding instant and seismic
direction. An approximate formula for the largest maximum value is also
given and the conditions under which this formula is exact are indicated.

1- INTRODUCTION

In most codes for earthquake-resistant design it is recommended that
earthquake effects be computed independently for two orthogonal directions
and structural members be designed agcording to the maximum value of the
internal forces or stresses thus obtaiqz This design value, however, is
not the true maximum except in the casé of structures symmetrical in two
orthogonal directions, with lateral load-bearing members parallel to the
axes of symmetry. In all other cases the design values are less than the
true maxima and the overall safety factor for the structure is therefore
reduced.

Hence, the determination of \both the seismic direction corresponding
to the true maximum of any specified internal force, stress or displacement
and the magnitude of this maximum value appears as an important problem in
seismic analysis of structures.

In this paper first the equation of motion for llnear structural sys-—
tems is derived for the general case and later, using thése equations, the
determination of both the maximum value of any effect such as .an internal
force, stress or displacement and thé corresponding seismic direction at
each instant is shown. The determination of the largest of the maximum
values of any spec1f1ed effect together with the correspondlng instant and
seismic direction is also explained.

An approximate formula for the calculation of the fargest of the maxi-
mum values of any specified effect during the whole of the vibratiom period
is derived in terms of the maximum components obtained, for each seismic *
vibration component of the foundation. It is shown that-the results ob-
tained from this formula are always on the safe side. The conditions ™
under which this formula becomes exact are also indicated.
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2- NOTATION AND DEFINITIONS

The symbols used in the equation of motion for the first-order seismic

analysis of linear elastic structures are defined as follows :

[d] = [D(t)] : coltmn matrix composed of the nodal displacement component
L funttions D:(t) which define the displaced configuration
of the system at any instant t.

: displacement functions of the. foundation in the direcctions
of orthogonal axes x,y,z during the ground motion.

&

: column matrices composed of the rigid body displacement
components of the system produced by u - 1, uy 1,
u, = 1 respectively, i.e. unit foundation

d%splacements in the directions of orthogonal axes x,y,z.

[8] = [8(v)] : column matrix composed of the relative nodal displacement
components §:(t) of the system with respect to .the
foundation. ~Through the above definitions,

[d] = []- 3 (o] "

(1i=x,y,2)

-[S] : a square matrix where each k th column is composed of
the elastic forces at the nodes produced by Sk =1 and
acting in the direction of nodal displacement components
Dj, i.e. system stiffness matrix.

{
- M : a square matrix where each k th column is_composed of the
inertial forces at the nodes produced by D, = 1 and
acting in the direction of Dj , i.e. system mass matrix.

—[C] : a square matrix where each k th column is composed of
the damping forces at the nodes produces by the unit
relative velocity.component §, = 1 and acting in the

Hirection of ng i.e. system damping matrix.

In the abgve definitions the total number of dots on symbols denotes
the corresponding derivate with respect to time.

In systetig where the variations in the magnitude of axial forces are
negligibly small during vibration, the second-order theory counterpart of
the stiffness matrix [S] may be used.

3~ EQUATION OF MOTION

Through the above definitions the dynamic equilibrium of the system
may be expressed as,
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(] [d] = ~[s] [6]-[c] [4]
[s](6]+[c) [8]+[M] [d] = o , | @

..f" terms 1n Eq. 2 ~denote the elastic forces, the damping forces and
[ the {Bertlal fordes respectively.

.. Differentiating Eq. 1 twice with respect to time and substituting
[d} in Eq. 2 yields the equation of motion,

[s {61+ [c] (8] +[10 (8] =-3 Dl (u;] 5, S
(i==x,y,2)
4~ DETERMINATION OF THE MAXIMUM OF A SPECIFIED

EFFECT AND THE CORRESPONDING SEISMIC DIRECTION

4.1~ The special case of identical displacement functions

In this section the special case of identical displacement functions
i.e.,

ux(t) = uy(t) =u,(£) = u(t) (4)
shall be investigated.

The value of any internal force, stress or displacement is denoted by .
= F(t) and the values of F(t) produced by seismic vibrations x’ Uy, U
in the directions of orthogonal axes x,y,z are denoted by F.(t), F §
F,(t) respectively. The acceleration components of the foundation ¥
produced by an earthquake of acceleration u and direction cosines Ax? A
A, are Ag.u, A,.u, Az.u respectively. Consequently, through Eq. 3 ,
the value of F “is, by superposition,

y,’

ul SUSED NVIE SR (5)

Eq. 5 may be expressed as the scalar product of the two vectors ?1
and a ,

F = ?1.Z=r|f1| |2| . cosy =-lF1|.1.cosy (6)
where,
o~ F : ith ents F_, F , F
17 1(t) : a vector with components x Fyr Fpe
a : unit vector in the earthquake direction defined by kx’Ay’Az’
Y : angle between vectors ?1 and a .

From Eq. 6 it is clear that for F to be maximum at any instant t,
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cosy = 1 .

i.e. the earthquake direction should coincide with that of F .
at any instant

7 the maximum value of F

max.F(t) = l?l(tj] = % Fiz(t)

(i

The largest of the max.F valires

design of the structure shall occur at a certain instant

denoted by max.max.F, is the value of

max.max.F = max.F(t ) =V I F.2(t )
m i 1 m

(

. Each of the FX,Fy,FZ components
of F(t) may be determined by inte-
grating Eq. 3 seperately for seismic

vibrations in each of the x,y,z direc-

tions. The component functions thus
obtained are plotted schematically in
Fig. 1 a,b,c . The maximum value of
F(t) at any instant t may then be

determined numerically through Eq. 8 .

The max.F(t) corresponding to these
component functions is shown in
Fig.l 4 . The max.max.F value pro-
duced during the whole of the vibra-
tion period is the maximum ordinate
in Fig. 1 d.

The same procedure may similarly
be applied to the case where rota-’
tional vibrations defined by
w () ‘“yy(t) =u, () =u(t) (10
also exist about the orthogonal axes
X,¥,z. In this case each of the
vectors ¥ and 3 has 6 components
instead of 3 . Column matrices
[Ugel» [U_] ,[U ] composed of the
rigid bod?ydispla%ement components of
the system produced by u__ =1,

. XX,
u =1, u =1 ,i.e. Unit founda-
tI8n rotatifis about the orthogonal

v =0

(N

From Eqs. 6

t 1is,
.

(8)

= X,¥,2 )

which has to be considered in the

t . This wvalue,
max.F at the instan tm’ i.e.,
9)
1= X,y,2 )
F (1)
b max.Fx
{a) /
\J tm — x \_j t
Fyit)
maxFy
i) /I\
Lm0ty Nt
Fp (1)
max.Fy
(c)
tm
\~// '
max.F(t)
b e
max.max.F s
VEmax F}
(d) !
tm Tt
max.F(1) =V F;v F;' F;

max.max.Fzmax.F(t) < szx.F:* maxf;,* max.F;

Fig.l Vibration diagrams
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axes X,¥,2Z , are first calculated. Then the additional functions F__(t),
F y(t), F,,(t) are obtained by integrating Eq. 3 seperately for

t{e additional terms on the right hand side. These terms are

M [Ugg - T, —[M] .[Uyy] .4 and -[M].[U,,]. 4 respectively. The
max.F values and max.maX.F are found from Eqs. 8 , 9 bearing in mind
that (i‘—X?Y,Z,XX’Y}',ZZ)-

4.2~ The general case

In this section the case of foundation vibrations which can be repre-
sented by the non-identical displacement functioms,

u, = a_.u , u_ =a_.u s u =a .u
b x"x z z' z
x y y Z z (11)
u_=a__.u , u_=a__.u s u =a .u
XX XX XX yy ¥y yy zz "2z’ zz
shall be investigated. Here u_, u,, st Gxx’ U, Ezz represent the known

seismic vibrations acting on the foundationm. Tﬁzy first three functions de-
note vibrational displacements in the directions of the orthogonal axes
x,y,z and the last three demote vibrations about the same axes. ay,a,a,,
ayysdyys8zy Aare coefficients which define the magnitude of foundation
displacements produced by uj(i=x,y,...,2z). It is seen that the earth=
quake effect is defined such that the magnitude a =|3| of the vector a
whose components are a;(i=x,...,z2), remains constant during the period
of ground motion.

Each of the acceleration components u; of the foundation produced
by the earthquake thus defined will be,

ﬁi = ai.ﬁi (i==x,ytz,xx,yy,zz) (12)

and for each accelerat%pn component the right hand side of Eq. 3 will
take the form,

~[) (v, 8, -5, (13)

The value of any internal force, stress or displacement is denoted by
F(t) and the values of F(t) produced by each of the seismic vibration

functions u. are denoted by F; = F;(t). It is clear that each F; may
be determined by integrating Eq. 3 for each vibration function ﬁi, i.e.,
(5] (5] +[c] 18,1 D] (3] = ~B [m,]5; » 5, = 5,60 (3
-ﬁi > Fi = Fi(t) (1= x,¥,2,XX,yy,22)

|
. The value of ‘F produced by the earthquake defined in (11) is, by super-
\ﬁ?sition,
F=ZXF,.a, (1 = X,¥,Z,XX,Vy,22) (14)
i 1 1 .

,Eﬁ.{lﬁ may be expressed as the scalar product/of the vectors fl and
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> s
a, i.e.,

F=F .3 ‘ (15)

> - . .
where Fl and a are the vectors with components Fi and a; respectively.

From Eq. 15 it is seen that for F to be maximum at any instant t, the
ratios between the components Fj and aj have to be constant, i.e., the
direction of ¥, should coincide with that of a . The maximum value of F
at any instant™ t 1is, therefore,

max.F(t) = [¥,].]3] =a / : F2(6) (16)

> . . . . . . ..
where a = [a[ is the coefficient which defines the magnitude of seismic
vibrations. It is seen that the results obtained in Sections 4.1 and 4.2
are similar.

The largest of the max.F values which has to be considered in the de-
sign of the structure shall occur at a certain instant t, - From Eq. 16
this value is,

max.max.F ==max.F(tm) =a/Z Fiz(tm) (17)
i

(i = x,y,2,xX,yy,22)

The numerical procedure described in Section 4.1 may similarly be
applied for the calculation of max.max.F given by Eq. 17

4.3. Approximate formula for the largest of the maximum values

In design calculations it is mostly the max.F. = F.(t.) values that are
computed instead of the functions F;(t). Since the inStafit t. at which
max.F. occurs is different for each vibrational displacement cofiponent
u-==ai.ui, then, for all ti’

i .
max.max.F < a v I max.Fiz(ti) (18)

i
a = [al ’ (1 = x’y:zxxxsy}'Szz)‘;

For example, the value of the expression in the right hand side of inequality
(18) corresponding to the component functions in Fig.l a,b,c is indicated by
the dashed horizontal line in Fig.l d.

According to the above inequality the largest of the maximum values to
be considered in the design of the structure may safely be approximated as,

max.max.F =a vV max.Fi (19)
i

The approximate formula (19) becomes exact only when all of the calcu-
lated max.Fi(ti) values occur ag the same instant t, ,i.e.,

t; = t, = constant (1= x,y,2,8X,yy,22) (20)
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Condition (20) is truly satisfied and formula (19) becomes exact if
the functions Fj(t) are similar with respect to t since in this case the
ratios among the ordinates of the functions Fj(t) are independent of t
and all the max.F; values occur at the same instant.

In most practical applications only the horizontal vibration compo-
nents Uy, of the foundation are taken into account. In these cases
the largest ~of the maximum values may safely be approximated as,

wl

max.max.F = a /max.sz + max.Fy2 (19a)

2
a=vya_ + a
x

For structures in which the dynamic characteristics in each of the x
and y directions are equal,the functions F_(t) and F,(t) will be propor-
. . . X y
tional, leading to the equality,

max.max.F = a max.Fx2 + max.Fy2 (19b)

It is evident that for structures in which the dynamic characteristics
in the x,y directions are close to each other, the formula (19a) will give
a good and safe approximation for max.max.F.

5- EXAMPLES
5.1~ Example 1

The structure shown in Fig.2 is
symmetrical in the x,y directions and
has shear walls which are non-paral-
lel to x and y.

If this structure is subjected V
to identical foundation vibrations
uy(t) = uy(t) = u(t) and is designed
such that” the normal modes, the natu- E
ral frequencies and the damping ra- _“ g -
tios in both x and y directions ﬁ- B
are equal to each other then the
‘functions F (t) and F_(t) which
correSpond to any 1ntern§l force F
in one of the shear walls are propor-
tional. In this case the equality

19b 1is valid and max.max.F may be Fig.2 Floor plan of Example 1
obtained by substituting the max.Fy
and max. Fy values computed through

spectral analysls into (19b),bearing in mind that [a[ . If the first
mode alone is considered in the design it is suff1c1ent that only the natu-
ral frequencies and the damping ratios corresponding to the first mode in
the x and y directions be equal for the formula (19b) to give the exact
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value of max.max.F. For the speciél case of max.Fy == max.]i'y the value of
max.max.F will be,

max.max.F = /f\.max.}?x

5.2- Example 2

The structure shown in Fig. 3 has identical frames in both x and y
directions and the cross sections of all columns are square. It is again
assumed that uy(t) = uy(t) = u(t).

mn_n

Since the Fx(t), Fy(t) functions NN
for the corner stress at '"a" in Q /

column 4-4 are identical because of -©
symmetry, the formula (19b) is valid. T
The maximum values max.Fy, max.Fy com- 7 p
puted through spectral analysis are *‘ &
equal and therefore, -*-_
-
max.max.F = ff.max.Fx -
:
This example shows that in earth- S
quake-resistant design the sole consi- [} -®

deration of the larger of the max.Fy
and max.Fy values for the design of
sections may, in certain cases, lead

to quite -unsafe results. .
1 Fig.3 Floor plan of Example 2
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