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SUMMARY

The general differential equation of an open-section shear wall
and its solution are presented which considers the action of flexural
twists and bimoments. Different combinations of applied twists and
bimoments and the resulting load effccts which cause warping of the
cross—section are developed. Such general solutions are evaluated for
a wide range of k-values, which is found to be a good measure of warping.
It has been shown that if certain k-values are obtained in preliminary
design, the open-section shear wall can be treated as a thick-walled
beam by applying classical formulas. The solutions are applied to a
practical problem.

INTRODUCTION

Open—-section shear walls are frequently used as lateral load
resisting elements in tall structures subject to earthquake férces. Even
though the analysis of planar shear walls is quite well-known, there is
much ambiguity in the analysis of open-section shear walls, as that open
section shear walls develop cross—sectional deformations and stresses
which cannot be foreseen nor treated by classical methods of analysis.

The general approach to the analysis of open-section shear walls is
to treat them as thin-walled beams. The term "thin-walled beam" then
acquires an important meaning, since it does not only define the
appearance of a beam, but also its behavior under. load.

The designer wants: to know an exact definition of a thin-walled
shear wall, since the actual thickness of the walls does not decide
wheather a shear wall will behave as a thin or thick-walled one.
Theoretically, a thin-walled shear wall can be defined as any beam of
which the principal sectorial moment of inertia is not equal to zero,
but from the practical point of view this definition is too gemeral.
From an engineering point of view, when the bimoment and flexural twist'
diminish to an insignificant value in a short distance from the loaded
point, then these forces can be treated as local, and the shear wall
can be analyzed with classical formulas as a thick-walled beam. There-
fore, it is of paramount importance to analyze open-section shear walls
under most commonly occuring loading cases and study the "speed" with
which the function of bimoment ‘and flexural twist disappear. It is only
then possible to say when an open—-section shear wall can be treated as
a thick-walled beam or when to go to a more refined analysis applying
Vliassov's Theorems. ’
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GENERAL EQUATION OF OPEN-SECTION SHEAR WALLS

Consider an open section shear wall loaded by a twisting moment at
its tip as shown in Fig. l.a., the final distortion of which (Fig. 1.b)
can be represented as the summation of distortions shown in Fig. l.c.
and Fig. l.d. A twisting moment causing bending of flanges around their
respective minor axes of symmetry is called a "Flexural Twist" Tw. A
- flexural twist causes a pair or pairs of bending moment which aré called
"Bimoments, B".

The relationship between external loading and internal forces, i.e.
bimoment and flexural twist, and their distribution along the length of
a beam are governed by a differential equation as derived below (1).

The relationship between the angle of twist and internal bimoment
is as follows,

=

& B(z) (1
dz EL '

N
5]

where § = angle of twist of a beam over a distance z; z = longitudinal
axisj B(z) = bimoment at z; Iw = principal sectorial moment of inertia;

E, = E/(l—vz); v = Poisson's ratio. The flexural twist caused by B(z) is
o%tained by the first derivative of B(z), as
g '
= ' - .o .
I, B'(2) Ellw 3 (2)
dz

The relationship between the angle of twist $#(z) and the external or
internal St. Venant's twisting moment Tv is given by

_ z

B(z) = Tv(z) ac (3)
where G = shear modulus of elasticity; and C = torsional constant.

The length dz of an open-section wall loaded by internal and
external forces are shown in Fig. 2., From the condition of equilibrium,
the following can be written.

=+ = =

d Tv d TW dT = m dz (4)

Using Eq. (2) and Eq. (3) in Eq. (4), the differential equation of

bimoment and flexural twist as functions of twisting moment, and their
distribution 2long the length of a shear wall is obtained.

A ,

' _ 249 __ 1 4@ __ = -

dz dz B, e E1lw _

2 _ o

K= == (6)
1w

The solution of Eq. (5) for a straight shear wall having a constant
cross—section is as follows (1).
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_ dg . B
By = Oy + 52 S_m_lfz_(}ﬁ)_q-c_g {1 - cosh(kz)}
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where m = th/dt; ¢O = angle of twist at z = 03 Bo = external bimoment

at z = 0; T = external twisting moment at z = 0. The function m
represents all external twisting moments acting on a beam over a distance,
z. Differentiating Eq. (7) by dz twice and making use of Eq. (1), the
expression for bimoment is obtained.

dQ’o GC To
B(z) = - 75;-7;-51nh(kz) + B0 cosh(kz) + *© sinh(kz)
1 z
+ X J sinh k(z-t)m_ dt (8)
o t

The proper signs of all load effects mentioned in Eq. (8) are shown in
Fig. 3.

External Uniform Twist

ag
Boundary conditions : 75; = 03 T0 =-mL 3 B(L) =0
B(z) = o {kL sinh k(L-z) + cosh kz - cosh KL} (9
k=~ cosh kL
_d B(z) _ m _ _ .
Tw(z) =~ T K oosh L {-kL cosh k(L-z) + sinh kz} (10)

The graphs of Eq. (9) and Eq. (10) are shown in Fig. 4 for different
values of k.

External Point Twist

ag
Boundary conditions : To = =T 3 7;§-= 0 3 B(L)=20

Point twist is defined as a uniformly distributed twisting moment over
a distance Oc, or

T=mAc>m= T/Ac (11)
T sinh kL - sinh k(L—zt) .
B(z) = ¢ IR cosh kz - sinh kz
+ sinh k(z—zt)} (12)
-

for z > 2
-7t
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sinh kL - sinh k(Lezt)

= i - cosh k
Tw(z) T { <osE KL sinh kz - cosh kz

+ cosh k(z—zt)} (13)

— ‘

for z > z,
When zt =1L
- T ssinh KL R (14
B(z) {EEEE*EE cosh kz - sinh k?} )
sinh kL .

= oot - 15
Iw(z) T {cosh T sinh kz - cosh kz} (15)

The graphs of Eq. (14) and Eq., (15) are shown in Fig. 5 for different
values of k.

External Point Bimoment

dg
.. 0
Boundary conditions, i 03 T0 =03 B(L)=
In this case m_ in the integral part of Eq. (13) must represent an
external bimomént acting at z,. From definition, we can represent a
bimoment as a bending or twisting moments.

B=TA>T=B/A ' (16)
cosh k(z,-L)
B(z) = B{ ———g7— cosh kz - cosh k(zp-2)} o F17)
cosh(zy-L)
T (2) = B k{ —ssn i Sinh kz + sinh k(zg-2)} (18)
— > 5
for z > zg

If Eq. (17) and Eq. (18) are evaluated and the effects superposed at
increments from z = Q0 to z = L, the case for a uniformly distributed
bimoment is developed, Fig.6.

ILLUSTRATIVE PROBLEM

An I-shaped shear wall is subjected to a bimoment (1t—m2) and twist
(1t-m) applied at the tip. Similar internal load effects are obtained for
both loading cases. For the case of éxternal bimoment at the tip, the
geometric properties and resulting flexural twist and internal bimoment
at z/H = 0.5 are presented as a percentage of maximum values occuring-

"at the tip. One of the cases is presented in graphical form in Fig.7.
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TABLE 1

Loading H(m) | h(m) | bm) | t@m) | k(@) |z 1,(0.5) | % B(0.5)
50 | 3.0 | 3.0 | 0.20]0.072 | 28 34
Ty | 50 | 4.0 | 3.0 | 0.20]0.056 23 24
B | 50 |5.03.00.20{0.047] 16 17
" 50 | 5.0 | 3.0 | 0.20]0.047 | 28 34
ty X 50 | 5.0 | 4.0 | 0.20]0.033| 34 50
50 | 5.0 | 5.0 | 0.200.026 37 63
¢ = uniform| 30 | 5.0 | 3.0 | 0.20]0.047 | 28 34
wall 40 | 5.0 | 3.0 | 0.20|0.047 32 45
thickness 45 | 5.0 | 3.0 | 0.20]0.047 | 34 50

CONCLUS IONS

It can be observed from Figs. 4-6 that the value of k (see Eq. 6)
is a good measure of warping effects of flexural twist and bimoment.
When the value of k is greater or equal to 0.1, at midheight of the shear
wall, the flexural twist and bimoment are about 10Z of the value at the
point of application. :

For externally applied twists or bimoments, the internal bimoments
and flexural twists created die away approximately at equal rates.

Lf a much faster speed of decay is desired from a design point of
view, a much greater value of k must be obtained, such as 0.5. But, from
the illustrative example, it is seen that such a high value of k is
quite difficult to achieve in practice.

The height of the shear wall does not seem to be significant in the
occurrence of the warping effects.

For preliminary design, comstructing graphs, as shown in Fig. 4-6,
will be helpful for the choice of cross—sectional shape and dimensionms.
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