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SUMMARY

An optimization procedure providing the most economical design of asei
smic coupled shear walls is presented. When the seismic load, width, height and
relative distance of the walls are fixed, the problem is reduced to three de-
sign variables only: thickness, maximum ductility of the beams and maximum
drift. On them do in fact depend all the other variables through conditions
which guarantee a good behavior of the structure when subjected to a strong
earthquake. A few numerical examples are also given.

INTRODUCTION

Coupled shear walls effectively solve the problem of structural design
within seismic areas. In fact they combine a high stiffness, which reduces
damages to non-structural components in consequence of the decreased defor-
mability of the structure, with a considerable capability of dissipating
energy during the hysteresys cycles of the beam elements connecting the walls,
if suitably designed.

The authors, in two previous works [ 3,4], showed how to attain the li-
mit design of coupled shear walls for a fixed value of the static load equi
valent to the seismic action. The limit design is based on appropriate limi
tations on the maximum ductility of the conmnecting beams, so as to avoid
failures due to excessive deformation, and on the maximum drift of the walls,
so as to limit damages to non-structural components.

In this paper, we briefly sketch the fundamentals of the above mentio-
ned analysis and present the relevant design formulae; afterwards an optimi
zation method wich provides the design of minimum cost will be described.

FORMULATION OF THE PROBLEM

The shear wall under consideration, has only a vertical row of openings
(see fig. 1) and it is subjected to a seismic equivalent static load of trian
gular shape with zero value at the bottom. The actual connecting beams are
idealized as a continuous connection between the coupled wr1lls [1] with a to
tal stiffness and strength equal to the sum of the corresponding values of
the single beams. In reality the structure collapses when both coupled walls
as well the connecting medium attain yielding; in the present so as in the previous
works, in order to reduce structural and non-structural damages, the structu
re is considered to be collapsed when the connecting medium and one wall only
attain yielding. Moreover, the yielding of nearly the whole (> 90%) connecting
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medium is requested before the first yielding of any of the coupled walls,
to warrant a ductile behaviour of the structure. ) .
The thickness of the walls "s", the maximuym ductility of the connecting
beams "n" and the maximum drift of the walls "A" are chosen as c'le§1gn varia
bles of the optimization procedure, whereas the ge?metric qx.sar}tltles b1, ba,
b, h, H have fixed and known values. The aforementioned positions 1e?d' (2)
to the following formulae (the suffix "L" stands for quantities at limit sta

te):
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where:

W, is the value of the seismic equivalent static load at collapse;

M, (z) is the bending moment due to Wi; . i .
J, is the moment of area of each connecting beam, h, its depth and qp its 1i
mit shear force; N
"P12(z) is the normal force due to vertical loads,

M2 L and Nj2p are the limit bending moment and normal force in any cross
section of the walls 1 and 2 respectively.

The aforementioned quantities and therefore the reinforcements of beams
and walls, can be calculated in terms of the design variables through a ra-
pidly convergent iterative procedure, controlled by the "V" ratio of the
average value of ductility to its maximum value all over the height.

The abovesaid collapse conditions are fullfilled by the structure if
only J, (and hence q;) is not less than zero and W, is not less than the va
lue W, of the seismic equivalent static load at the yielding of the 907 of
the connecting medium. The existence domipion of the limit design solution
[ 4], in the space of the variables s, N, A, is so defined; such dominion may
be represented in a Ag/A, vy plane, with Ao= 11WLH2/[ 60E (J,+J2)V], for each
minimum fixed value we= 1 of the w = W /W, ratio (see fig. 2). The straight
line xo/% = 1 represents the J,=0 condition while the curves wy= const. re-
present the w=wp conditions; the straight line and the curve relevant to
the wy chosen value, are the boundary of the existence dominion of the solu
tion. The above exposition clearly shows that, for a given design problem
(i.e. fixed W, and geometric quantities), there are infinite solutions s,

M, X within the existence dominion. The optimum design corresponds to choo-
sing the minimum cost solution among such infinity.

OPTIMIZATION PROCEDURE

The optimization problem treated is a nonlinear programming problem and
needs numerical solution. Firstly, the maximum and minimum allowable values
of the design variables are evaluated. In the so defined field in the space of
the variables s, T, A, the object function to be minimized is given by the
sum of a cost function and a penalty function. The penalty function is given
by the sum of two terms; the former warrants that the found minimum belongs
to the existence dominion defined in ti : previous paragraph, the second
warrants that the condition hmin <h, ™ hmy is verified, with hy, and hp,
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minimum and maximum allowable values of h,. The cost function is given by
the sum of the volumes of concrete and reinforcements multiplied by their
unitary cost. The volume of vertical reinforcements required by the walls is
evaluated interpolating the values corresponding to the cross sections at
the bottom and at the midheight of each wall; such reinforcements are obtai
ned via an independent optimization method..

The volume of réinforcements required by the beams is evaluated choosing
its best arrangement according to h./b ratio. Minimum reinforcements are im
posed both horizontally and vertically, all over the structure.

The conjugate direction method [2] provides the direction along which the
search of the minimum has to be performed,- by the golden section method. The
starting directions are assumed to be parallel to the coordinate axes.

The whole procedure is performed for a fixed minimum value w, of w and
obviously the attained optimized solution change according to the chosen w,
value.

NUMERICAL EXAMPLES AND CONCLUSIONS

Four different walls have been optimized via the above described proce
dure; tab. 1 shows the fixed geometric quantities and load of each type of
wall. The minimum and maximum allowable values of the design variables are:
Sshear <SS 1.2m 1.0< 7 <13.0, 1x1073< X < 8x10™3, Furthermore it
has been assumed wo = 1.2 for the S301, 5303, S601 walls, w, = 1.0 for the
S603 walls and hyjn =0.0m, hyax =1.00m. The obtained results are presented

. . in Tab.2; three
Type " b b1 b2 h | Floor Weight different seismic
(m) (m) (m) (m) (m) (N) coefficients (ho-
rizontal to verti~
S 301 | 30. |1 5.5 5.5 3. L4,23x10° cal load ratio),
5 indicated by the
S 303 | 30. | 3. k.5 4.5 3. k.23x10 first digit in the
S 601 | 60. |1 5.5 5.5 3. . 23x10° type specification,
5 has been considered.
S 603 | 60. | 3. 4.5 L.s 3. 4,23x10 In particular such
coefficients are:

Tab. 1 0.2, 0.4, 0.6 for
the S301+S303 walls

and 0.2, 0.3, 0.4 for the S601-S603 walls.
The results in Tab.2 provide some suggestions for a choice of s, n, A
leading to the optimum design:

1) The thickness should assume always the minimum shear value;

2) The ductility should not assume the maximum allowable value for walls
with wide holes;

3) The drift should not assume the maximum allowable value for short walls.

By such optimal choice of the design variables, the w value attains wo
for tall walls only while h. attains its maximum value for walls with wide
holes. At last it must be underlined that al” the »nrevious observations seem
to be independent from the value nf the seismic “ficient.
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Type 8 7 | Ax10 qp, he Steel | Concrete | - Cost w
(m) KNxm) | (m) 3 | @

28301 0.063 12.86 2.56 137.12 0.658 0.159 | 21.24 37.14 1.32
48301 0.143 12.95 2.44 | 31933 0.676 0.420 | 4832 90.31 1.30
65301 0.249 12.64 2.49 | 550.05 0.665 0.791 | 84.65 162.61 1.30

28303 0.077 8.02 5.99 92.90 0.995 0.175 | 21.59 39.15 1.53
48303 0.175 8.00 6.01 210.52 0.993 0.475 | 49.09 96.60 1.53
65303 0.305 8.00 6.01 366.01 0.993 0.897 | 85.33 175.07 1.53

25601 0.177 12.85 7.91 343.35 0.435 1.272 | 118.60 | 249.52 1.26
35601 0.298 12.85 791 615.87 0.445 2476 | 198.77 | 452.61 1.24
48601 0.445 12.97 791 989.44 0.457 4.179 | 237.76 | 729.12 1.22

25603 0.175 5.23 791 | 37057 0.950 1.068 | 98.03 | 204.87 1.04
35603 0.317 5.52 7.90 | 649.03 0.970 2286 | 176.73 | 405.32 1.04
48603 0.483 6.11 7.91 | 1020.93 1.000 4.510 | 270.55 | 657.26 1.04

Tab. 2
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