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STIFFNESS OF SURFACE FOUNDATIONS

H. Tajimi®
SUMMARY

The present paper describes a set of influence functions due to a con-
centrated load dynamically applied on an elastic soil layer in accordance
with the semi-analytical finite element method. Also, using thus obtained
functions, the computational procedure is presented to evaluate the foun-
dation stiffness for the analysis of soil-structure interaction problems.
Some discussions on the supporting bed of the layer system are made.

INTRODUCTION

To calculate the dynamic stiffness of a direct foundation resting on
an elastic soil layer, the finite element approach has been effectively
utilized by discretizing the soil layer into a number of horizontal
thin layers and assuming linearly varying displacements across therthick-
ness of each discrete layer, while the displacement functions with respect
to the horizontal coordinates are of analytical forms. On performing this
approach, it seems to be a basis to search a compact solution of wave
propagation due to a harmonic point loading on an arbitrary location within
the structure-soil interface. This paper presents a three-dimensional
analysis in this course of the approach. The principal results herein
presented are the influence functions due to a point load located at the
origin of the coordinate system. The solutions are given by the mode super-
position of the frequency-dependent normal modes of generalized Rayleigh
waves as well as generalized Love waves in the N~layered system on the bed.

DISPLACEMENT FUNCTIONS FOR A HORIZONTAL POINT LOAD
When an elastic space 1s loaded by a harmonic horizontal force con-

centrated at the origin towards the x-direction, the wave motions are des-
cribed by the following displacement functions in the cylindrical coordinates:

- iwt o= iwt - iwt
u, =1, cos 6 e s Uy = Ty sin 6 e » u, =T, cos 6 e
Er © Jz(ar) - Jo(ar) Jz(ar) + Jo(ar) 0 4y
g = 3 Jz(ar) + Jo(ar) Jz(ur) - Jo(ar) 0 g, da (1)
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The associated stresses working on a z-plane are represented in the similar
fashion as

iwt - iwt _ = iwt

6 =0 _cosB8e , 0 ,=0,sin6e , o _ =35 cosfe
zr zr z6 z6 zz 44
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5, ) = J3,(r) - Jo(ar) J,(ax) + J, (ar) 0 ‘3‘1
Tl 3 Jz(ar) + Jo(ar) Jz(ar) - Jo(ar) 0 Gy [da (2)
5 0 0 0 2J_(ar) || &
zz 1 3

Herein, the relation between (61, 8ys 63) and (ﬁl, d,, ﬁé) are derived from
the relation of Cazr’ G0° Uzz) and (ur, Ty, uz) in the following forms:
di did d\Tt3

1 o P = 0 —
3, = G( Frale aus), 8, =G s 63 ard; + (A+2G) = 3

Then, the equation of wave motions in the three dimensional medium in the
cylindrical coordinates will be reduced to

2
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2 2
dz
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dﬁl 2 d ﬁ3 2
—-a(AMG) — + oG, - (M +26) - pwi, =0

dz 3 dzz 3

where A = Lame's constant, G = shear modulus and p = density of material of
the medium. A and G take complex moduli to represent the hzsteretic proper-
ties of the material. In the following, the time term elot 4111 be omitted,
if there is no confusion.

Instead of the homogeneous elastic space, consider a horizontal N-
layered medium resting on a rigid bed, as Shown in Fig. 1, in which the top
surface and underlying interfaces are listed in order by the index 1 to N.
Assuming the displacements varying across the thickness of each layer in
accordance with the finite element analysis, Eqs. (4) and (5) are converted
to the following forms:

WPIa] + [6,] - o’ M) {a,) = {5,) 6
@’[a,) + 6] - D {ay) - al81™(a,) = (o) o
~a[B1GG;} + G7[A] + [6,] - o’ IND) (a3} = (55}
where
[4,1° = a1 [i ﬂ .16 1% = [_i ‘ﬂ [M]1® = pH 3 B ﬂ ©

e H{2 1 e M2G| 1 -1 e (A-6)/2 (MG)/2
= (202 Bpacts =
(A1 = O#26)% [1 z]’ [e,1 H [-1 1:] » [B] [-(;\w)/z (A=6)/2
These equations are alternate expressions to those already obtained!s2.
The displacement vector {1}, {8,} and {#3} and.surface traction vectors
{61}, {82} and {&3} are defined at the_top surface and all the interfaces
and are written in such a form as {§;}" = lujps Ugps -oes ugle (AL, (641,
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... are matrices constructed by assemblage of the element matrices [A 1€,
[Gg]®, ... of discrete layers.

The surface tractions {8;} {3;} and {33} are determined as follows.
As an example, consider a point load acting on the free surface. For this
case, suppose firstly a circle of radius r, on the free surface, the center
of which is situated at the origin of the coordinates. When a uniform
shearing stress py works in the x-direction within the circle, the stress

conditions are given by :
{ -p r<r

b3 0 9)
0 r>r
o

“2x|
ZX {2=0

When the cylindrical coordinates are considered, these conditions can be
written in the integral forms of Bessel functionms:

czr Z=0 - 0zelz=o =
On the other hand, Eq. (2) becomes

= PT, f: Jl(u'ro) J,(er) da (10)

— — CO
Gy ¥ 0,0 = ]0 (8, +3,) J,(ar) do v
Comparing Eqs. (10) and (11), one has
311 + 512 =0 (12

in which the first index 1 in the subscript indicates the free surface.
Substituting Eq. (12) into Eq. (2) and paying attention to the sign of &7,

I fo Jo(ar) 611 da (13)
Comparing the above equation with Eq. (10), one has

511 = - p T, Jl(ar ), 612 = P,T, J (ar ) (14)

In particular, the poirnt loading is given by r - 0, which leads to J (ar )
+ org/2. Then, denoting px"ro? = Py, one has °

Px Px
611 ==, % 612 =5 ¢ (15)
Thus, the traction vectors are
T T
{8,} = 18,,, 0, .., 017,  {8,} = [8,,, 0, ..., 0] (16)

In the following, the point loading on the top surface will be dis-
cussed. The external tractions working on arbitrary interfaces at depth
will be treated in a similar manner. To solve Eq. (6), one uses the method
of mode superposition analysis. The eigenvalue problem of Eq. (6) yields
the eigenvalues By“ and thé corresponding eigenvectors {¥y}, (k =1, 2,
..., N), for any values of w“. Then, the solution can be written in the
form,

{1 2 {Y } q 7))
k=1 kB
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The generalized coordinates qrg are determined by inserting Eq. (17) into
Eq. %6) introduced by the external traction of Eq. (16), premultiplying

{Yk} and using the orthogonality condition of modes.
g “2n D, 2 .2
kB a“~ B
where - k
DkB = {Yk} LAS]{Yk} (19)
Eqs. (7) can be solved in a similar manner. Writing them in the
matrix form,
T ~
- o}
(Al D N 3
where _ 2 _ 2
(2] = [6,] - w'IMI, [E)] = [6,] - wM] 1)

The loading term {51} is given in Eq. (16) with {83} = 0. Furthermore, it
can be converted to the form of the first order of o:

[E_] [E], {g;} 0
[EP]T . [Ep] 11:13} ) 0 (22)
(E] -[B] -[A]] v} {a}
[Ep] -[B] —[Ap] {95} {a,}

The eigenvalue problem of Eq. (22) yields the eigenvalue oy, (k =1, 2, ..
2N, -7< arg ok <0), and the corresponding eigenvectors {Xx} and {Zy}. In
this case, -0y are also the eigenvalues and the corresponding eigenvectors
are {Xx} and - {Zx}, as readily examined by inserting them into Eq. (20) with
vanishing of loading teims. In the application of the mode superposition,
the solution of Eq. (20) are written in the form,

{ﬁl} {Xk} {xk}
{a,} 2N {z. } 2N -{z }
3 k k
=1 3y L q (23)
{vl} k=1 ak{Xk} ke 5 —uk{Xk} ko
{03} ak{Zk} ak{Zk}

where qrq and qpqy are generalized coordinates and are determined by substi-
tuting Eq. (23) into Eq. (22), premultipl¥ing by the eigenvector [{Xk}T,

{z 3T, o 1%, oqelzi 3T or [{%dT, (7 )T, -0 (%3 3T, 0, {2, }T] and using
the orthogonality properties of modes. Thus,

e | s 24
Yo ~ 21 Dpo &= 0’ Yo = 27 Dpo @+ o (24)
where
D = (R ITIEIY + (227 [E 12} - o2 ix 27 1a 1) - obiz )T 1a 102,
(25)
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Hence, from Eq. (23)

2 2
2N P X o 2N P_X 20 o
C “x T1k “k . x "1k et
{a,} k21 T D {Xk} {ag) = kzl 5;-5——‘{zk} ) (26)
= ak = ko o= o

Since {@1},{p} and {;}have been obtained as functions of a, the desired
displacements {G,}, {ue} and {TU,} are determined by performing the inte-
gration of Eq. (1) As a consequence, one finds

Py 212“ k Xix P N Y
{8} { }-——¢( r)+ {Y, }==— 9_(8,1)
R TR % k=2=1 KD, 2Pk

R 212« kax P g Y,

{ }———¢(a )+ {Y, }==— ¢. (B, 1) 27)

Gyt Tk X ™ b D, 1Pk

P 2N 2a.
{u}=-—z{Z}——lC-—l—1-(-0(ar)

k=1

In the derivation of the integration, the following formula® are applicable:

x°J (x) v
ol v TZ oy
fo T3 X o [H (@) - Y ()] (28)
for Iarg z| <m, =1/2 < R(v) < 3/2

where H_v(z) = Struve's function,
Y_v(z) = Bessel function of the second kind.

Owing to multivalued function of Y(z), the complex variable z cannot
rotate across the barrier at 8 = -1 in the complex plane. Hence, when -m<
arg z <0, one obtains the relation,

Y,(2) - Y (-2) = 2Y,(2) + 21 J,(2) = 24 H§2) (2)

) 29
Y (z) + Yo(—z) = 2Yo(z) + 21 Jo(z) = 21 HO (z)
where H(Z)(z), Hiz)(z) = Hankel functions of the 2nd kind. Thus,
1 x . 1l _, 11, T 4@
¢1(2) = i'f: (Jz(x) - Jo(x)) xz_ zz dx = - 22 -i57 Hl (z) +1 H_ (z)
8,(z) = & 7@y +3,60) 5 ax = -L- :I.—g—%H](_Z)(z)
2 X_~- z . z (30)
¢(z)=2jJ(x) S dx = - 15 87 (2)

X"Z

If 0 < argz < m, H(%)(z) will have to be replaced by —Hsl)(z). Accor?i?
to the asymptotic representation of the Hankel function, when w > 0, (2)
represents a wave travelling toward the origin, whereas Hvz (2) represents

a wave travelling toward infinity. This is the reason why the condition of
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-T < arg ok, B < 0 1s required.
DISPLACEMENT FUNCTIONS DUE TO A VERTICAL POINT LOAD

Because of axisymmetric motion with respect to the z-axis, the dis-
placements and stresses will be described in the following forms:

u. } © Jl(ar) ﬁl i Tpr ) © Jl(ur) 61 i
u 0 Jo(ur) ﬁ3 *lo 0 Jo(ar) 63

z zz (31)
where the displacement functions @; and @3 will be easily proved to satisfy
Eqs. (7). It follows that the displacement vectors {d;} and {d3} of the
total system of horizontal layers have to satisfy Eq. (22). Hence, the
solutions.will be obtained in the same manner as the case of horizontal
loading. When a vertical point load is applied to the top rsurface at the
origin of the coordinates, the traction vectors are given by

P
{8} =0, 18,17 = (8,5, 0, ..., 0], 85=75>0 (32)
Correponding to Eq. (24),
S | s R i | S (33)
- ’ }
ka 2m Dka, a - o ko 2w Dka o + %
Finally, P 2N 2a2
{u}=- —— 2 {Xk}~—————— 2 (a x)
(34)
P_ 2N 232
{u}=-—-— Y 1z }—tb(ukr)
k=1 ,
‘where
¢4(z) = f: Jo(x) —55——5 dx = - i-% H§2)(z) (35)

EVALUATION OF SURFACE FOUNDATION STIFFNESS

For numerical calculation, it is more applicable to use the Cartesian
coordinates rather than the cylindrical coordinates. From the transfor-
mation between both coordinates , one has

u o =u. cos 6 - uy sin 6 = ﬁr c0829 - Tg sin26 = EE;—EQ cos 26 + urz %
a+d
uy =u. sin 6 + ugy cos 6 = 2 sin 26
Hence, if a harmonic point loading (P_, P ) is applied at a location

(x, y5) on the surface z = 0, the surfacx displacement (uy, uy, u,) at
(x, y) are given by
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u Vl cos 26 + V2 Vl sin 26 -V3 cos 6 Px

= Vl sin 20 —V1 cos 286 + V2 —V3 sin @ Py (36)

u, V3 cos 0 V3 sin 8 —V4 z

where V1 and V2 are denoted for surface displacement of (T,+ Tg)/2 and
(Gp- Ug)/2 due to a unit horizontal loading. V3 and V; are remaining
components of surface displacements. They are given in below:

2 2 2
2N o X
1 Kk X1k 1 ¢ Yk
Vi=5r I 5 Fem) + 2 F, (B, 1)
12" et Pa I D 1k
2 2 2
2N a, X
1 k 1k 1 ¥ Yy
V, = - == ——==F (o 1) +-—= ) F, (8, 37)
T N SR T |
1 12“ % xlk 1k A o Zizlk
= ——===F_ (o 1), vV, = F (a, 1)
Lty ka 37k 4 2w k=1 Dk %k
P @ =-5-1225P0) 412500 - -2 -1 18P
z z (38)
P =-1380@, 5@ =--131Pe
r = \/(x - xa)z + (y - ya)Z , o = tan_1 (y - ya)/(x - xa)

The following procedure to evaluate the foundation stiffness is normal
in treating the base area subdivided in numerous meshes. The above
equations are used to represent the relations of loads and displacements
at any two nodes, which are located at center of mesh elements. As an ex-
ception, the displacement at the self-loaded node may be approximated by
the displacement at a point with an appropriate distance from the node,
as frequently used by a half of radius of circle, whose area is equal to
that of the mesh element.

In the foregoing description, the rigid bed has been assumed. But,
when the bed is considered as an elastic half space, there is no consistent
approach to incorporate the elasticity of the bed, as far as the finite
element approach is dealt with. Approximate methods to account for the
radiation effects due to the elastic bed are available in placing the dash-
pot mat at the bottom of the soil layer* and otherwise in adding the
equivalent external damping as usually employed in the calculation of soil
amplification by a one-dimensional lumped-mass system analogyS. Fig. 3
shows a comparative illustration of hcrizontal stiffness and frequency
diagrams for the different treatments in the bedding condition. The simi-
lar diagrams for rocking and torsional modes exhibit no significant valleys
as found in the figure, even if the rigid bed is assumed.

The present approach can be applied to evaluate the foundation stiff-
ness including the interaction effects of adjacent bases and even the
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foundation stiffness with embedment effects, because it is easily extended
to the calculation for the load application on subsurfaces.
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Fig. 3 Modification of horizontal stiffness and frequency
curves due to different treatments for elastic bed
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