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SUMMARY

‘Analytical expressions and numerical examples are presented for a
method for dynamic response analysis of the foundation as the structure-soil
systems. In this method the soil region is represented as a homogeneous,
isotropic, linearly elastic half space in plane strain. And the dynamic
problem of structur-soil systems is treated as the wave propagation
problem expressed by the wave equations in the form of numerical integral
expressions in terms of potential functions ¢ and Y. The procedure is.
based on solutions of the wave equations in the soil region and solutions
of the mixed boundary value problem which is expressed by stresses at the
surface of the soil and displacements at the structure-soil interface.

INTRODUCTION

Basically there are two methods of evaluating the dynamic characteri-
stics of the foundation. One is associated with half-space analysesl“zof
elastic or viscoelastic layered system, and the other is through the use
of finite element method®. In the former method, the treatment of the
problem generally results in the solution of the mixed boundary value
problem which should be expressed by stresses and displacements. But in
most of the previous studies, boundary conditions were expressed only by
stresses assuming the stress distributions beneath the foundation, and
also the surface waves were not considered for the embedded foundation.
In the latter, it seems difficult to define the boundary conditions which
represent the effects of wave energy dissipations at the outer side of
the soil region.

The features of the method which is proposed in this paper are the
numerical intearal expressions for the wave equations, and the treatment
of poundary conditions in which the mixed boudary conditions can be
directry expressed by simple terms of potential functions ¢, |y, even for
the embedded foundation. Furthermore, since the soil region is fully
represented by the medium of wave propagation without defining the outer
side boundary, this method can express the effects of wave energy dis-
sipations more clearly than the finite element method.

BASIC EQUATIONS FOR ELASTIC MEDIA

With reference to an orthogonal cartesian coordinate system (x, z)
shown in Fig. 1, the equations relating Oxx, 0zz, Oxz, the stress com-
ponents, to Ux, Uz, the displacement components, applicable to a homogene-~
ous, isotropic, linearly elastic body in the state of plane strain are

oxx = (A + 2u)%§§ + A %g?
czz=(>\+2u)§%:—+>\%%§— (1)
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where A and U are the Lamé constants.
The Navier equations of equmprium are

2
3 dux 93Uz LR _ Jtux
(A + u) = (ax + -a-—-) + U (axz + 322) Ux P 3¢ 2 2)
3 dux , dUz 32 32 _d%uz
AWz Gx ez MG e T 0

where p is the density of thc medium.
The displacements can be expressed in terms of potential functions

¢ and Y:

=90 _

Ux = 3% " 3z
(3)

Uz=a¢ ...lg

ox

Eq. 3 will be satisfied if the functions & and Y are solution of the
wave equations

(4)

where
=/_X_%°£ vy | (5)

a is the velocity of dilatational waves, and B is the velocity of
distortional waves.

The stress components can, from Egs. 1 and 3, be expressed in terms
of potential functions:

= _Ji ._JE ._lﬂ_
o = A (axz 2) +2u ( Bxaz
_y 22 92¢ a¢ L%
0zz = A (ax2 +'§"E7+ 2u( Bxaz) (6)
2
Oxz = | (2 ) ——Y

axaz sz 322

NUMERICAL INTEGRAL EXPRESSIONS FOR WAVE EQUATIONS

The wave equations, Eq. 4 can be rewritten in the form of numerical
integral expressions by Takahashi method.4
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Vix,z,t+T)= m/-sz _521P<X+€,Z+C.t)d€dc-w(x,z,t—r)

+0(s2*+0 (%)

where T is time increment and s;, s are integral intervals. Eq. 7
will be satisfied if s;, s;, o, B and T are related as

51=/§a1',sz=/§,87 (8)

Since the right-hand side of Eq. 7 contains a double integral term, it
is inconvenient to calculate numerically.

The double integral can be replaced by single integral and differential
terms, with the aid of Taylor expansion, as follows:

1 sy S
¢ (x,z,t47) = QS—I{):SI ¢(x+E,z,t)dE+j o0(x,z+C,8)ac }

-S1

2 N2 2
st 00 (x,z,t), 0°¢(%,2,%t) _ ~
+ 7;-( S%Z + 32F )-¢(x,z,t-T)

+ 0(s1*)+ o(Tt")
(9)
1 So S2
w(xlzlt+T)= E { j ll)(X'*'E,Z:t) d£+.)' ’JJ(XrZ*'Z;t)dC}
st (B%Ylxz,0) |, 3% (x,2,8)

S2 -S2
+ = e + 322 )~Y(x,2,t-T)

+0(s2" 1+0 (T*)
Applying Simpson's 1/3 rule and numerical differentiation by Collatz

to the first term and the second term respectively in right-hand side of
Eg. 9, the following eguations are obtained as below:

¢(x,z,t+T)=%r {p(x,2z+s1, t)+d (x~51,2,t) +2¢ (x, 2, t)

+0 (x+s1,2,8) +¢ (x,z-51,8)} = ¢(x,2,£-T)

+0(s;*)+o(T"
(s17)+0(T") (20
w(x,z,t+r)=-ﬁ§-{¢(x,z+sz,t)+¢(x—sa,z,t)+2¢(x,zyt)

+P (x+s2,2,t) +P(x,2-s2,t) } Y (x,2z,t-T)

+0(s2*)+o(T")
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As shown in Eg. 8, the integral intervals s, and s, are different
because in general o is not equal to B. Thus it becomes complicated to
evaluate stresses and displacements. To avoid this complication, Taylor
expansion is used for the numerical reduction of the wave equations.
¢ (x,z,t+T) and ¢(x,z,t-T) can be expressed by using Taylor expansion:

&g 2 32 ’ ’t
b (x,2,t+T) = ¢(x,2,£)+ Ta¢(gt2 = +If ¢(gt§ )
3 3
+ %g_a (x:2.8) 4 o (11)

2 A2
Bz t-1) = b(x,z,0)- TR T 3000z, t)
% 3% (x,z,t) y
S o + O(T") (12)

Combining Egs. 11 and 12, ¢(x,z,t+T) is expressed as follows:

2
¢(x,2,t+1) = 2 ¢(X:Zrt)+Tza B(:IZIt) - d)(xlzlt—T)

+0(t) (13)
Substituting the wave equation, Eg. 4 into Eg. 13 and using Collatz

differentiation, ¢(x,z,t+T) can be described in the form similar to
Eg. 10:

o (x,z,t+T) = 7%;—{¢(x,z-s1,t)+¢(x—31,z,t)—4¢(x,z,t)
+ ¢ (x+s1,2,t) +P(x,z+s1,t)} +2¢(x,2,t)
- d(x,z,t-T) +0(s,*)+0(T") (14)

where P; = (s;/ot)2. Replacing ¢, s; and P; by ¥, s; and P,,
Y(x,z,t+T) is obtained, provided that P, = (s2/8T)2.

Since s; equals to s; when P; equals to (a/B)2P1, ¢(x,z,t+T) and
Y(x,z,t+T) are expressed with the same integral interval s:

O(x,2z,t+7) = —%— {b(x,2z-s,t) + d(x-s,2,t)-40(x,2z,t)

+¢ (x+s,z,t) + ¢(x,z+s,t)} +2 ¢ (x,z,t)

- (x,2z,t-T) +0(s*)+0(T*)

B 2 1 (15)
P(x,z,t+T) =(7I0 —§~'{w(x,z-s,t)+w(x—s,z,t)—4w(x,z,t)

+P (x+s,2,t) +) (%, z+s,t) M2V (x,2,t) =P (x,2,t~T)

+0(s*)+o(T")

where
BZ
s = = = = (=
sy} =s; , P=P; ( G ) P2 (16)
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NUMERICAL DIFFERENTIAL EXPRESSIONS FOR BOUNDARY CONDITIONS

The boundary conditions for the dynamic problems of the structure-
soil systems are expressed both by displacements at the structure-soil
interface and by stresses at the surface of the soil.

Displacement boundary. There are two portions in the structure-soil
interface. One is along the base line of the structure, and the other

is along the side line of the structure. Each portions are denoted as

Db and Ds respectively in Fig. 1. The numerical differential expressions
of the prescribed displacements Uy (x,z,t) and Uz, (x,z,t) in Db or Ds are
written from Eg. 3 as follows:

Ox(x,z,t)= Ti;'{¢(x+s,z,t)—¢(x-s,z,t)—w(x,z+s,t)

+P(x,2z-s,t) } +0(s?) 17

Tz (x,z,8)= 5 { lxts, 2, 0) Y (xms, 2, £) 49 (x, 2+, )

-9 (x,z-s,t) } +0(s?)

In the interface Db, the virtual potentials ¢(x,z-s,t), Y(x,z-s,t)

which are outside the soil region are calculated by the prescribed dis-
placements and the potentials in the so0il region determined from Egs. 13
and 14. In the interface Ds, the virtual potential ¢(x-s,z,t), Y(x-s,z,t)
are calculated in the same manner.

Stress boundary. The boudary condition at the surface of the soil region
is described as follows:

ozz (x,0,t) = O, oxz(x,0,t) =0 (18)

The numerical differential expressions of the prescribed stress
0zz (x,0,t) and Oxz (x,0,t) are written from Eg. 6 as below:

O0zz (x,0,t)= 1%{ {¢(x,-s,t) +b (x-s,0,t) ~4¢ (x,0,t) +d (x+s,0,t)

u
+h(x, s,t) H+ 3;3-{4¢(x-s,o.t)—8¢(x,o,t)

+4¢ (x+s,0,t)-P(x-s5,5,t) +P (x+s,s,t)

) (x~5, - 5,t) - (x+s, —s, )} +0(s?) (19)

oxz (%x,0,t) = EE;'{¢(x—s,—s,t)—¢(x+s,—s,t)-¢(x—s,s,t)
+¢ (x+s,s,t)+2 (P (x,-s,t) Y (x-s,0,t)

+P (x+s,0,t) =P (x,s,t) ) } +0(s?)

Since Eg. 19 contains six virtual potentials ¢(x-s,-s,t), Y(x-s,-s,t),
etc., it is impossible to obtain all of them directly. The virtual
potentials ¢ (x,-s,t), ¥U(x,-s,t) are determined approximately using
other virtual potentials at time (t-T) instead of time (t).
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The calculatlon of the dynamic response of the structure-soil systems
is performed as follows: (i) Determine the virtual potentials at the
structure-soil interface from Eq. 17. (ii) Determine the potential
functions in the soil region from Egs. 15 and 16. (iii) Determine the
virtual potentials at the surface of the soil from Eg. 19. (iv) Determine
the virtual potentials at the structure-soil interface from Eg. 17.

(v) Obtain displacements and stresses in the soil region from Egs. 3 and
6. (vi) Repeat the operaticn from (ii) through (v).

EXAMPLE PROBLEM

The structure-soil system for an embedded foundation and parameters
used in the exaimple problem are presented in Fig. 1. Forced displace-
ment on the foundation is rotation at the center of the foundation base
line. Two types of forced displacement are used. One is static type
(case 1) and the other is harmonic vibration type (case 2). Forced
rotational angle O of the foundation base line is prescribed as below:

@ = 0.5 rad. (case 1)

(20)

0.5 sin (———-t) rad. (case 2)

© 10T

Calculated displacement distributions of the structure-soil system are
presented in Fig. 2 (case 1) and Fig. 3 (case 2).

The time histories of the normal stress distributions at the structure-
soil interface in the case 2 are shown in Figs. 4 and 5. The time
histories in Figs. 4 and 5 are of 0zz at the foundation base line and of
Oxx at the foundation side line, respectively. In both figures displace-
ments of the foundation are indicated by the dashed lines. Since the

time length calculated in the case 2 is short, vibration of the foundation
is not yet stationary. It is indicated, however, by Fig. 4 that the stress
distributions at the base line become linear as the time passes. And the
phase lag between displacements and stresses is observed apparently.

CONCLUSION

Analytical expressions and numerical examples have been presented for
a method for dynamic response analysis of the foundation as the structure-
soil systems. The dynamic responses of the foundation were calculated by
solving the wave equations and the mixed boundary value problem which were
simply expressed in terms of the potential functions ¢ and Y. This paper
proposes a method for the evaluation of the dynamic characteristics of the
foundation, and the numerical examples used here show only an application
of this method. Further studies on the dynamic characteristics of the
foundation should be conducted by using various parameters and longer time
lencth for the dynamic response calculation.
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