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SYNOPSIS

The dynamic response characteristics of flexible beams installed
with dynamic vibration absorbers which are made up of mass, spring,
and dashpot are dicussed in this paper. Not being modeled on the usual
two-freedom-system, this vibration system is analysed exactly by the
Laplace Transformation Method. The logarithmic decrements and the
steady state response are calculated for simply supported beams and
cantilever beams. Furthermore, by applying the absorbers to a suspen-—
sion bridge, the effects are investigated experimentally and theoreti-
cally.

INTRODUCTION

In the design of long-span bridges and high-rise buildings, the
vibration caused by earthquake motions or wind forces is one of the
severe problems to be settled. Some attempts to reduce the dynamic
motions by them have been done for the structural safety or amenity by
adopting a dynamic vibration absorber called TMD (tuned mass damper)
or dynamic damper. For example, in U.S.A., the application of a large
scall TMD to tower structure is reported. In Japan,a dynamic damper is
equiped to a pedestrian bridge to reduce the uncomfortable vibratioms
induced by passers-by.

But, examples of practical application of the dynamic vibration absor-
bers are generally found in mechanical engineering systems. Therefore,
in the analysis of the vibrational characteristics of the system, the
effect of flexibility of structures is not required to be taken into
account and the mathematical model of this system is usually a two-

degree—of-freedom one. However, this approach has deficiencies in
its application to flexible structures. Namely, neither the vibra-
tional modes of high degree or phase lags nor the behaviors of the
vibrating absorbers can be analysed accurately. Consequently, it is
also impossible to make the capacity of the vibration absorber opti-
mum by the conventional method.

A simply supported beam and a cantilever beam are taken up here as
typical flexible structures considering the application to pedes-
trian bridges, towers or high rise buildings.
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Working of the dynamic vibration absorber to the reduction of vibrations
is expressed by the logarithmic decrements in each damped vibration mode.
The response of cantilever beams exited by sinusoidal displacements at
their fixed ends is calculated.

Finally, as an experimental study, a model test of a single spanned sus-
pension bridge installed with dynamic vibration absorbers on its stiff-
ened girder is presented.

BASIC EQUATIONS OF MOTION

Consider a uniform beam with constant flexural rigidity EI. A number
of vibration absorbers are installed at arbitarary locations. The absor-
bers are assumed to consist of mass M;, spring Ki and dashpot C; as
shown in Fig.(1). The equations of motion of transverse vibrations for
the beam and the absorbers are coupled and given using the Diracs derta
function as follows.
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where Rau is external. forces acting on the point at x.
By dividing by m and M, and noting
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the Laplace transform of Eq.(2) with respect to t is given by
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and the Laplace transform of Eq.(l) with respect to t and x is
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in which the following initial conditions and boundarly conditions
are adopted.

tag Yusiayse dyumafdt =Yt Yim -"yn- a’yim/a ta Yoo

X=0: yuu=9s DYufox-¢i 'y /dx < Myl Ix*~ Py

18



and
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From the inverse transform of the right hand terms of Eq.(4) with
respect to u and s, the solution is obtained.

CANTILEVER BEAM

To investigate the effectiveness of dynamic vibration absorber,
the transverse vibration of a uniform cantilever beam which is driven
at its fixed end by a sinusoidally varying displacement in the form of
A sinwt is analysed herein. A vibration absorber is attached to a
arbitarary point of the beam showm in Fig.(2).

The equations of motion of the beam and the absorber are written as
follows respectively.
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Applying here also the Laplace Transform Method to Eq.(5) and Eq.(6),
the following transform equation is derived.
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In these equations, the initial conditions an? the boundary conditions
are t=-0 : Yexor=0 Dy.u)/bt - 0. ’yln - 0. d'?m/dt 0.
X=0 : Yiet)=Po BYu.u/aX =Pt 3’\/.. tl/a)(l - 0. b’y(. u/2x°= 0
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k)
and t2 = NS+ K. t3 = eS + Ke. f4 = S+ NeS + Ko.

From Eq.(7), the inverse transform of Y.x with respect to u becomes
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Letting P =0, the characteristic equation should be obtained. Assuming
that the roots of the characteristic equation is r¢= Ra % ils, the complex

number s becomes
s-—ZPR"I' + [P(L,‘—-R,.'). cecsstscsssesenenens ...-..(10)

From Eq.(9), the damped natural frequency wn and the logarithmic decre-
ment 4, are calculated as follows respectively.
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And the inverse transform of Y: is equal to the sum of the residues at
the all singular points of Y
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Fig.(3) and Fig.(4) show the relationship between the logarithmic decrc-
ments and the damping coefficient of vibration absorbers- in the 4th and
the 3rd damped vibration. Dimensionless ratio pc= Cc!//mEI could be
conveniently written in terms of the value of the coefficient of viscos-
ity Cc=2/MK which is required for the critical damp of the vibration
absorber. By these figures, it may be seen that there is a appropriate
damping coefficient of absorbers which makes absorber most effective and
even though the absorber mass is small, a respectable logarithmic decre-
ment could be expected in any vibration mode. ’

Representative results of the steady state response at the free end of
cantilever beam is illustrated in Fig.(5). This figure shows that even
with a very small vibration absorber (mass ratio m =100, M¢ =0.1),
the maximum resonant deflection of the free end is only 10 times of the
fixed end displacement if the absorber is tuned in good condition.
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Fig. (5) Maximum resonant deflection at a free end by sinusoidal displacement
A sinwt at the fixed end in the 1lst mode vibrationm.
K is relative frequency of absorber and cantilever beam.

In the calculations, a single vibration absorber is installed at the

free end of the cantilever beam.

SIMPLY .SUPPORTED BEAM

As to a simply supported beam with a dynamic vibration absorber at
its midpoint as shown in Fig.(6), the characteristic equation is obtained
by the same manner as befoere.
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But, in this case, the vibration absorber works not at all for the sym-
metrical vibration such as the 2nd mode, the 4th mode, etc., because
the vibration node is located at the midpoint of the beam. So, it is
required that at least a pair of vibration absorber should be attached
as shown in Fig. (7).
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The characteristic equai:ion about this beam is
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MODEL TEST OF SUSPENSION BRIDGE

To verify the effectiveness of dynamic vibration absorbers and to
check the calculation method used in the preceding section, the following
- model test was done. Fig.(8) shows the suspension bridge model used in
the experiments. A pair of vibration absorber were installed in symmet-
rically. The equations of transverse vibration of this suspension bridge
and absorbers are written as follows. :
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in which, Hw is the initial cable tension due to dead loads, h is the
additional horizontal cable tension caused by the inertia forces and

f is the cable sag. This additional cable tension h is small in com~-
parison with Hw and becomes zero in the case of asymmetrical vibration.
To simplify the analysis of this equation, letting h=0, the charac-
teristic equation is obtained as follows.

i L'a
Fig. (8) Suspension bridge model used in experiments and calculations
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Comparison of experimental results with calculated results
Fig. (9) in the 2-nd mode vibration
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Fig.(9) shows the comparison of the experimental results with the
calculated ones in the 2nd mode vibration. In this figure, FR means the
ratio of the frequency of the vibration absorber to that of the sus-
pension bridge. The frequency of the absorbers were fixed up to the
range of frequency ratio from 0.9 to 1.0.

According to the increase of damping coefficient , the logarithmic
decrement becomes large, and when p¢ becomes more than 0.20, it was
impossible to measure the logarithmic decrement because the vibration
damped so quickly.

The experimental results shown as circles o are a little scattering
but they clearly indicate the effectiveness of vibration absorbers

in damping and almost coincide with the calculated ones.

COCLUSION

The fundamental vibrational characteristics and response of flexi-
ble structures installed with dynamic vibration absorbers are exactly
analysed herein and some basic problems which have a bearing on the ap-
plication of the vibration absorbers for flexible structures are stutiied.
A number of conclusions could be listed from the results presented in
this paper as follows;

(1) By the method adopted in this paper, the vibation of flexible struc-
tures with the dynamic vibration absorbers can be explicitly ana-
lysed without replacing the vibration systems with the conventional
finite-degree-of —~freedom ones.

(2) Even in the range of small vibration absorber mass ratio, the vib-
rations of the flexible structures with absorbers are damped very
quickly.

(3) As for the dynamic vibration absorber, there is the most effective
damping coefficient expressed by the function of the mass ratio.

(4) The frequency of the vibration absorber must be tuned close to one
of the frequencies of the structures at which aim is taken to damp.
When several vibration modes should be damped, wulti vibration
absorbers are required.

(5) The experimental results by the model test show a significant
effectiveness of the dynamic vibration absorbers for damping of
vibrations and good agreement with theoretically predicted onmes.
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