DANPING OF A SOIL-STRUCTURE SYSTEM

P. SotirovI

SUMMARY

The influence of energy d1s51pat10n in the soil on the
damping of a soil-structure system is studied. The model of
the system is regarded as a lumped mass system w1th a
foundation that can sway aad rock in the soil. It is assumed
that the damping mechanlsm for both soil aud structure is of
e hysteretic type and 1s included in the complex stiffnesses
of the components. The participation of the compouents ia the
modal damping of the stiffness is illustrated vraphlcally. A
simple formula for evsluation of the damping of the first
mode of vibration is proposed.

INTRODUCTION

Demping of a real structure can be 31cn1f1cant1y
effected by the 301l—qtructure interaction. The influence of
the interaction is different for each mode of vibration. The
energy dissipation, due to radiation and hysteretic action
of the foundation in the soil, is different for swaying and
rocking. This paper preseats some results on the participatioa
of the components in the overall damping of each mode of
vibration of the soil-structure system, and proposes simple
expressions for evaluation of the damping of the system. In
the formulation of the model of the system hysteretic
damping is used for both the soil and the structure, not only
because it is physically realistic, but also because its
presentation by complex stiffness gives the same results as
those obtained by the summation of the energy dissipation in
the components of the system.

MODEL OF A SCIL-STRUCTURE SYSTEM

The idealization of an actual soil-structure system is
shown on Fiz. 1 as a lumped mass multy-dezree-of-freedom
system, which can sway and rock iu the *round Thie energy
d1¢51patnon or the damping of each story and that of the eoil
for swayia: and rocking caa be expressed by tl.eir respective

onplex stiffnesses, )

K¥ = Kj(1+iog) (L)
vhere oj is a hysteretlc damping coefficilent of the j-th
element of the system.

The equation of motion of the fixed base structure is:
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IMIE™Y + TK™Hx™} = - XMOIM{1} (2)

where: IM} and (k'] are mass matrix and complex stiffness
matrix of the fixed base structure, (¥*}, {x*} ~ complex
acceleration and displacement vectors of the fixed base
structure, ¥’(t) - ground acceleration in complex form. Tn
case the same structure is supported on a flexible foundation
(see Fig. 1), two degrees of freedom will be added:; the
horizontal translation.of the base and the rotation of the
base asbout a horizontal axis. The equations of motion of the
soil-structure system are:

me(%g +X0) ¥ KExE = = FTIMI(IRR) + K1)

MI{X*} + [K*Hx"} = - X [Ml{4} (3)
o9+ k3Pt = - (WYIMI({§7] + X11))
where: m; and I+ - mass and mass moment of inertia of the
foundation. From Fig. 1 can be seen that
(X} = Xe{4} + win} + {x} (4)
Substitution from Eq. 4 into Eq. 3 leads to )
ML (X"}, + [K*l(X"}s = - %& (M1 (8} (5)

where: [M] -~ mass matrix of the soil-structure system, [k"]; -
complex stiffness matrix of the soll-structure system, {x"}
{x*"}s - complex acceleration end dlsplacement vectors of the

system, {8} - vector of external excitation,
| [ g + UFIMIUY o {AYIME § T IMIth)
Mlg = | LMt oAl e
TV ! (T T (D10}
[kl = O F IR I i IR SO AR (P SR (AR R E
.3 ¥

It is clear that the system, presented by Eq. 5 does not
possess classical normal modes. If the assumed mode shapes sare
orthogonal, Eq.5 can be decoupled by the following coordinate
transformation:

{_X’SS [A"I{'V('} (6)
where [A] is matrix of complex mode shapes. It is not
difficult to prove that the complex mode shapes are actually

orthogonal and the j-th., decoupled differential equation of
motion is

AT x it = - SPXE (7)
The complex natural frequency w’ can be determined by the

solution of the homogenous part of Eq.5, whick leads to the
well known classical eigen value problem, i.e.
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JIx*] - w*[Mlg) =0 (8)

The natural frequency,qu, and the corresponding modal
damplng coefficient, oj , of the j-th mode of vibration are
included into the complex eigenvalue of the same mode,

wi = w4+ i), (9)
An advantase of the cons1dered theoretical model is the

possibility to find the modal damplng together with the
natural freguency of.any mode of vibration of the system.

METEOD OF ANALYSIS

In order to study the participation ot the components
in the overall damping of each mode of vibration of the soil-
structure system, a model of a three story structure is
chosen (see Fig 2) To make the analysis more clear some
simp llflcatlone are involved. It is assumed that all masses
of the structure as well as all story heights are equal. The
mass of the foundation is expressed by the masses of the
structure (m, = rm). Some discrete values of r are used in
computatlon,gf modal -demping. The mass moment of inertia of
the system about the horizontal axis of rotation in the soil

is:
I=1I¢ + {nVIMI{n} (10)

The mass moment of inertia of the foundation,TIy , is too
small in comparison with the second term of Eqg.1l0 and it is
neglected. By this approximation the number of the modes of
vibration decrease by one.

The structure is supposed to be of shear type and all
stories have equal stiffnesses and demping coefficients.

Thus, K=K} =ks= K(4+ily . Nondimentional stiffness ratio
coefficients are introduced: s
Kht _ ¥h | L
NrggrTTe i At E tE (11)
where: K - real stiffness of the stories, Ky, K - real

stiffnesses of the ground for rotation aad horizontal
translation, & - unit horizontal displacement at the top of
the fixed base structure, ¢ - rotation of the base, due to
unit force, applied at the top, d¢- unit horizontal
displacement of the foundation, h - height of the structure.

The ratio between A and A | u-X/A , 1s a constant
quantity for a given structure, founded on certain soil
conditions. It is a function of the ratio between the
equivalent radius of the foundation and the height of the
structure. Three values of u are chosen - 0,05, 0,1 and 0,2,
corresponding to the p0351ble veriety of dlmentlons of real
structures and values of Poisson's ratio.

The expan31on of Eq.8 leads to a n-th order equdtlon in
w*? . Thls equation can be divided into two equatlons. The
first one is for the real part and the second is for the
imaginary. The roots of the first equation are the squares of
the real natural frequencies of the system modes. Each

99



modal frequency,w; , is associated with the modal damping
coefficient, «; , which can be calculated by the second
equation. The simplifying assumptions mentioned above lead to
simple expressions for the modal natural frequencies and
damping coefficients: K

w; = p;(l) e QlZ)
and oy = d;(M)Xs + bj(r)oly + Ci(X) s (13}
where: x,m - stiffness and lumped mass of the stories, pi(A) -
frequency factor, function of the stiffness ratio A , a;(1),
. (X), ¢;(x) - participation factors of the damping values of
the components, function of the stiffness ratio - A , o -
damping coefficients of the structure, ofy, & - damping
coefficients for rocking and swaying of the foundatioa into
the soil.

ANALYSIS OF TEFE RESULTS

The solution of Eq. 8 is performed for the consequent
values of A from A=0 to =5 . The case of A=0
corresponds to the fixed-bese structure. Whea X =5 , the
displacement at the top of the structure, due to base
rotation is about 83,3% of the total displacement. This case
corresponds to a comparatively rigid structure, founded on a
soft soil. The results of the computation are presented
graphically. Fig. % illustrates the change of the frequency
factor, p; , as a function of the stiffness ratio, A , for
the alues of u = v,1l. The solid line is for r = 1 and the
dash line is for r = 3. It is evident that the mass ratio r
plays an important role for the change of the modesl
frequencies of the higher modes of vibration, due to the soil-
structure interaction. As it was mentioned above the number
of modes is reduced from five to four. The fifth mode of
vibration will appear, if the mass moment of inertia of the
foundation is not neglected. The natural frequency of this
mode is comparatively high and is not of practical interest.

The participation factors a;,b; and c¢; as a function of
the  stiffness ratio, A , are shown on Fig.4 and Fig. 5 for
the mass ratio r = 1 and r = 3 respectively. The sum of a:,

b; and C; is equal to one for every mode of vibration.
Therefore, bk and ¢; are presented as addends to a; . 1t
can be seen that the participation of the soil damping into
the overall damping of the soil-structure system increases
with the increase of A for the first and second modes of
vibration. For the first mode of vibration the influence of
the rocking in the soil is predominant, while the damping of
the second mode is more affected by the damping of the
swaying motion. The participation factor, b., which accounts
for the damping of the rocking motion is coﬁparatively small
for the higher modes and practically it ean be neglected. The
degree of the curves a;(a) or C:(\) iacreases with the
incregsemefedlg number of the mode. The ca(x) for the third

100



mode of vibratioa has an extremum for the same value of A R
for which ps(r) has an inflection point. vrhis corresponds
to the maximum horizontal translation of the foundation. The
nature of the participation factors for the fourth mode of
vibration is different from that of the other modes. The
participation of the soil damping starts from maximum and
decreases with the increase of X . For small values of A
thls is related to the predominant deformetion in the soil
rather than in the structure. It can be seen that the
partlcipation factors are much affected by the increase of
the mass ratio r, i.e. by the increase of the foundation mass
for all modes of vibration with the exception of the first
mode. Further investigations show that the participation
factors for the first mode of vibration are not influenced
by the number of the stories of the superstructure, 1a case
all stories are assumed to have equal stiffness and damping

coefficients.

For practical application of the presented results it
can be assumed that damping of the first mode of vibration
is due to energy dissipation in the structure and in the
ground, only for rocking motion. The swaying motion can be
neglected. Thus, the order of the mass matrix and the ‘
stiffness matrix of the soil-structure system will decrease
by one. Assuming that the fixed-base structure has classical
normal modes and applying a coordinate transformation, the
mass matrix and the stiffness matrix can be replaced by the
generalized mass M4 and the generalized stiffness Kk, of
the first mode of vibration. The solution of Eq.8 leads to
a simple expression for evaluation of the modal damping of
the first mode of vibration of the soil-structure system:

ol Ty + oy Ty (14)
TEL T

where: O - damping of the system, «&s - damping of the

fixed-base structure, oy- damping of the soil for rocking

motions, Tg- first mode natural period of the fixed-base

structure, Ty - natural period of rocking motion of the

structure as & rigid body. )
For the hizher modes of vibration the rocking motion

can be neglected, but this simglification does not lead to
& simple’ type of equation, such as Eq.l4.

oL =

CONCLUSION

The a.aalysis of the results for the participation of
the damping of the compoilents in the overall damping of the
soil-structure system, based on & hysteretic damping model,
can explain the variety of the modal damping values.

The proposed Eq.l4 for evaluation of the first mode
dampingz value can be used in design practice.
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