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SUMMARY

Theoretical analysis of the post local buckling behavior of a wide-
flange member is first performed. The results of analysis show good agree-
ment with the cyclic behavior obtained by the tests. Second, empirical for-
mulae estimating the rotation capacity of beam-columns are established,
mainly based on the experimental results. Good agreement between experimen-
tal and predicted values of rotation capacity is observed, and it is shown
that the formulae are valid for the members under arbitrary moment gradients.

INTRODUCTION

It is well known that restoring force of a steel member is deteriorated
owing to the lateral and/or local buckling, and therefore, in the design of
frames against strong earthquake motion, it is essential to clarify inelastic
behavior of the locally buckled members, Many experimental studies on the
post local and/or lateral buckling behavior of wide-flange steel members
have been performed. But very few theoretical studies were done[l]. 1In the
plastic design, it is needed that the members possess sufficient rotation
capacity. Therefore, for the development of reasonable design methods, cor-
relation between the plastic rotation capacity and various essential factors
has ‘to be clarified. However, very few researches were done[2, 3].

In this paper, the analysis of the post local buckling behavior of steel
beam-columns based on the plastic limit theorem is first performed, and the
results are compared with the experimental results[4. 5]. Second, empirical
formulae estimating plastic rotation capacity that contain several essential
parameters are established.

THEORETICAL ANALYSIS

A theoretical analysis is performed on the post local buckling behavior
of wide-flange beam-columns shown in Fig.l(a). The analysis is mainly based
on the technique used in Ref.[1l]. However, the present analysis takes into
account effects of plastic elongation in a local hinge forming ir the plate
element, and effects of axial stresses in the plate element on a specific
power of dissipation of the local hinge.

BASIC EQUATIONS AND ASSUMPTIONS At the plastic hinge rotating as shown in
Fig.l, the principle of virtual velocities and the principle of maximum
specific power of dissipation[6] give

M6 + P(n - 0.5)d-6 = Dp (L
where M = applied moment at the plastic hinge, P = constant axial load, nd =
distance between the flange compressed in the virgin loading cycle and the
neutral axis as illustrated in Fig.2, d = web depth, 8 = virtual angular ve-
locity of the plastic hinge, and Dp = total power of dissipation(= rate of
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internal energy dissipation) at the plastic hinge. From Eq.(1l), resisting
moment M is obtained as .
M= -P(n - 0.5)d + Dp/b (2)

For simplicity, the following assumptions are used. 1° Relative
strains at a plastic hinge are proportional to the distance from the neutral
axis(Fig.2). 2° Member is composed of a rigid-perfectly-plastic material.
3° Plate elements are in state of plane stress, and yielding or buckling
occurs when the yield condition of von Mises is satisfied, i.e.,

& = 0x% + 0y% - OxOy + 317 - Y2 = 0 (3)
where Ox and Oy = normal stresses in x and y directions, respectively, T =
shear stress, and Y = yield stress in simple tension. 4° Deformations
are sufficiently small. 5° Strain reversals in one loading cycle do not
occur. 6° A kinematically admissible velocity field in the plastic hinge
with local buckling is assumed as illustrated in Fig.3, in which the defor-
mation is confined to the heavy lines and the hatched regions. 7° A kine-
matically admissible velocity field in the local hinge is assumed as indi-
cated in Fig.4(b). 8° Strain rates are specified by the flow rule, i.e.,
gx = A(39/30%), &y = A(3%9/30y), Y = A(3%/31) (4)

where A = arbitrary nonnegative factor of proportionality, éx, éy, and ? =
generalized strain rates corresponding to Ox, Oy, and T, respectively.

Power of dissipation in a plastic region is generally defined by
Jo ¢ oxEx + oy€y + TY AV )
where the integration is extended over the entire continuum.

POWER OF DISSIPATION IN A IOCAL HINGE [Dg] Figure 4 shows an idealized
plate element with local plastic hinge. The plate element is subjected to
average stress nY, the angle between axis of the local hinge and plate center
axis is ¢, and the stresses in the local hinge are defined as shown in Fig.4
(a). When the local hinge rotates under the velccity p, the assumptions that
the length does not change and plane remains plane after the deformations
take place lead to

+
&y =0 (6, éx = t[p|/2 (7

where superscripts + and - denote quantities on compression and tension
sides in the local hinge, respectively. In view of von Mises condition(Eq. (
3)), stress components appearing in Eq.(5) are determined from the equilib-
rium of forces acting on an infinitesimal element shown in Fig.4(a), and the
equilibrium of forces in the cross section of the local hinge shown in Fig.4
(b). In view of strain rates given in Eqs.(6) and (7), together with the
flow rule, Eq.(4), integrating Eq.(5) leads to the expression of Dy, i.e.,

Du /8 1 g2 -2 . 4 “1 A
_IUL_ _ t + 3n‘sin’® |p|/6 8

bdfY 8/§bdf[ 1 -4 Vi-A
where t = plate thickness, 2b and f = flange width and thickness, respect-
ively, £ = length of local hinge, and A = 3(T@.sinp.cosp)?. The angular ve-
locity p is related to the angular velocity at the fixed end pa, as
6= Cpepa 9)

where Cp takes a constant value depending on the value of ¢. When the line
S'S"(or D'D") in Fig.3 is assumed to be a rectangular bar fixed at both ends,
the following is obtained by considering the geometory of the deflected bar.

. pa*fa = £a - én (10)
where pz and pa = rotation and angular velocity of plastic hinge forming at
both ends of the bar, respectively, and £a and €h = relative axial strain
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rate of the bar and its plastic component, respectively. Note that éa con-
tains the component due to change in geometry by the deflection(see Eq.(19)).
pa and €} are related by the flow rule. From the assumptions 1° and 6°, €5
is expressed by .
= Cg-d+8/(2zb) (11)
where CH is a functlon of the variable n, and ZCb is a length shown in Fig.3.
In view of Egs.(10) and (11), and the flow rule, Pa in Eq.(9) is computed as
= fcy+d/(2cp)1-18/{pa + tln|/(zb)}]  (12)

where |n|= (V8% + 1 - 6) = ratio of axial load carried by the bar to the axial
yield load, when the deflection at the center of the bar becomes equal to §<t.

POWER OF DISSIPATION IN A REGION WITH SIMULTANEOUS AXIAL AND ROTATIONAL DE-
FORMATIONS [Dg] Stresses in a region that is deforming axially with out-
of-plane deformation are defined as shown in Fig.3(b). The line S'S"(or D'D"
) in Fig.3 is assumed again to be the rectangular bar fixed at both ends.
Then, the following equations are obtained in this region.

T=0 (13), €x = C5°Ea (14)
where Cg is a function of n. Substituting Eq.(l1l) into Eq.(1l4) yields.
€x = CHg+Cs+d-8/(2Zb) (15)

As a result of a rigid plate element rotating about a local hinge, the plas-
tic deformation occurs in the adjacent plate element. For example, the rigid
plate JAKLS in Fig.3(b) rotates about the local hinge AK, and the plastic
deformations occur in the plate AASB, satisfying the following condition.
éh - éa = E’z‘éy (16)
where B = tany, Y being the angle £ABS. The relation given by Eq.(16) must
be held in the web plate, AADB and AEDF, where B = tank, K being the angle
ZABD in Fig.3(a). In view of Egs.(3), (4), (13), (15), and (16), quantities
in Eq.(5) are determined, and Dg is obtained as follows;
Ex > Ds /6 _ . Cu 't‘t P 2 Zgah Z
For & < 0, o t s /o? + a[CgB? - 2] + Cg2B* - CgR? + 1 (17)

where a = /' =1 - (6/;/62 + 1 )

POWER OF DISSIPATION IN A REGION REMAINING IN PLANE [Dy] The regions such
as AECF in Fig.3(a) may deform under lox] =Y and Oy =T = 0. Therefore,
power of dissipation Dy in such regions can be obtained easily.

METHOD OF ANALYSIS The power of dissipation in each plastic region (Dy,
DS, and Dy) can be computed when the deflections at point S of both flanges
and at point D of the web are given in addition to the parameters n, g, and
Y that specify the gollapse mechanism. Dp in Eq.(2) is obtained by the sum
of the power of dissipation in each plastic region. Variation of the rota-
tion A® measured from the point of load reversal, such as points() s ST,
® in Fig.2, is computed by

8 = 2zb(AeC - Aet)/(d + f) (18)
where, Ae =evariation of axial strain at the center of a flange thickness
measured from the point of load reversal, superscripts c and t indicate the
strain of the flanges in compression and tension at the virgin loading cycle,
respectively.

Ae€ is equal to Agy that is the variation of relative axial strain,
measured from the point of load reversal at S'S" in the compression flange
at the virgin loading cycle, and Aet is of the tension flange in the same
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sense. Aty may be decomposed into geometric component Agg and plastic com-
ponent Ach. Agg is given by .
heg = (8%/2)-(t/Tb)? - (gg), (19)

where (€g)q = value of geometric strain component at the point of load re-
versal. From the yield condition for the rectangular cross section and the
associated flow rule, the following relation is obtained.

€n = [t|n|/(cb)]1+pa (20)
Noting that pg is a function of n, and (.) in Eq.(20) can be considered as
a differentiation with respect to n, integration by parts gives the expres-—
sion for Aep as follows[7];

ben = [t/(2zb)12+[2%n|n| - 22nn,| + n? - n,?) (21)

where n; = value of n at the point of load reversal.

This analysis is based on the upper bound theorem. Therefore, among
the M - 6 relations, the lowest result is valid. In the numerical computa-
tion, the values of T and Y are tacitly assumed to be constant. For a spec-
ified value of the deflection at point S of the one flange, the value of n
is determined from the condition 9M/9n = 0 which satisfies the lowest
solution for M. Note that the deflections of other portion of the plastic
hinge are determined to satisfy the assumption 1°.

COMPARISON WITH EXPERIMENTAL RESULTS Two examples of the analysis are
shown in Figs.5(a) and (b) by solid curves, where the values of 7 and § are
assumed constant to be 0.4 and T/4 rad., respectively. It was verified nu-
merically that those values gave the lowest or nearly the lowest value of M
at 8/8pc = 5, where Mpc and 8pc denote the full plastic moment and the elas-
tic limit rotation, respectively, considering the effects of the axial load.
From the comparison of solid curves with dashed curves that denote experi-
mental results[4, 5], it is observed that the analysis well predicts the ex-
perimental behavior with the local buckling. However, for the specimens with
slender plates, the analytical curves overestimate the load carrying capacity.

The mode indicated in Fig.3 is one of the simplest modes for the alter-
nating bending. For the member under the monotonic loading, models shown in
Fig.(6) give also kinematically admissible velocity fields, in which the
buckling mode of the flange is the same as the one shown in Fig.3. The ana-
lytical results obtained by the similar procedure mentioned above, based on
the models shown in Figs.6(a) and (b), are indicated by dotted curves and
dash-dotted curves, respectively, in Fig.5. Comparing with three kinds of
analytical curves, it is found that the collapse mechanism assumed for alter-
nating bending gives greater load carrying capacity than the ones for mono-—
tonic bending, and that the collapse mechanism without web buckling gives
often the lowest load carrying capacity in the range of the small value of 6.

EMPIRICAL FORMULAE ESTIMATING ROTATION CAPACITY

For a moment-rotation relation of the steel member as illustrated in
Fig.7, the plastic rotation capacity of the member is generally defined by
R = ( Bcr/Ope) - 1 (22)
where 8.y = critical rotation defined by 6p or 6o.s5 as shown in Fig.7. Pre-
vious researches have shown that the plastic rotation capacity of the steel
members with local and/or lateral buckling is related to various factors.
From investigation on the independency of those factors, it is found that
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the following parameters are considered to be essential and independent;
Y’ Xf = (b/f)'/Y/Ev >\w=(D/W)I/Y/E, Zx/ix, k, Zb/iy, and P,/Py. In the
parameters above, E = modulus of elasticity, D = depth of a cross section,

W = web thickness, x = length between the plastic hinge and the point of
zero moment, Qb.= unbraced length, k = effective length factor for the lat-
eral buckling, ix and iy = radii of gyration about strong and weak axes,

respectively, and Py = yield axial load.

EQUUALENT PLASTIC ROTATION CAPACITY AND EMPIRICAL FORMULA In order to
derlvg the empirical formula, it is first considered that the real rotation
capacity R is given in the form of (Req)x(a function of Ix/ix, /iy, k, ¥),
where‘Req is the equivalent plastic rotation capacity defined as a fictitious
plastic rotation capacity that is a functiom of Af and Ay only. In Ref.[3],
the empirical formula
. R = (iy/2,)YF/Y : (function of cross sectional sizes) (23)
is suggested, where F = 2.4 ton/cm?. This formula is based on the test re-
sults under the condition, %x = %b. To investigate the effect of 2yx/ix, the
post local buckling behavior of cantilever beam-columns is analyzed taking
the collapse mode shown in Fig.6(b), and the results are plotted in Fig.8,
defining B¢r in Eq.(22) as the rotation at M/Mpc = 1,0. Figure 8 indicates
that R - &x/iyx relation may be expressed by

R = Ceix/lx - 1.0 (24)
where C is a constant depending on the factors except for f£x/ix. Taking the
form of Eqs.(23) and (24) into the consideration, the following formula is
obtained by the method of trial and error.

500 F
R = _ .= . 25
/@wmmmvcw 23

The procedure to determine Req as a function of Af and Aw is as follows.
First, the values of Req are computed from Eq.(25) by substituting the test
results[4, 5] of the rotation capacity observed at 8cr = 6y into R, and they
are plotted against arguments of Af and Ay. Sample results for the case P/Py
= 0 are shown in Figs.9 and 10. In this computation, k is taken equal to 0.7,
since all test specimens in Refs.[4 and 5] are cantilever beam-columns, whose
out-of-plane deflections are restrained at the top. Note that the value of k
becomes 1.0, if the simply supported beam-columns are considered(Fig.1l).
Figs.9 and 10 indicate that Req - Af - Ay relations may be expressed by

Req = Ci(Af - C2)2 + C3Ayw + Cu 5 Ci ~ Cy = constants (26)

Substituting Eq.(26) with the values of C1~ Cu determined by the method of
trial and error into Eq.(25) leads to

500 F 2
For P =0, R=/——————— + = .[80(Af - 0.65)° ~ 4.0Ay + 6] (27a)
K/ i) Wn/iy) ¥ £ v
For P = 0 R = 200 __  E <[50(k¢ - O 65)2 ~ 5.5\ + 71 (27b)
° ’ k(Ry/ix) Ab/iy) ¥ £-0 “Hhw

The formulae above are valid in the range Af < 0.65.

DISCUSSTION In Figs.1l2 and 13, the experimental values of the rotation
capacity Rexp appearing in Refs.[2 ~ 5, 8, and 9] are compared with the pre-
dicted values Rpred by Eq.(27). The test conditions in each reference are
shown in Table 1. It is observed from Figs.l2 and 13 that more than 70%Z(for
P = 0) and 80%(for P = 0) of the experimental values lie in the range, Rpred
-2 < Rexp < Rpred + 2. For examining valid range of Eq.(27a), two values of
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Rpred are calculated by Egs.(27a) and (27b), and plotted in Fig.l4. It seems
that Eq.(27a) is valid in the range 0 < P/Py < Aw/2A, where Aw is area of the

web, and A is area of the cross section,

The formulae are also applicable to the case Mz x 0, although Eq.(27) is
established based on the test results under the condition M2/My = 0, where M
and M, are values of bending moments at the lateral supports, and |M2| < |M1|.
To show the validity, consider the ratio of R to R that is the value of R
under the condition M, = 0, if the bending moment distribution is linear,

2x = &b/ (1.0 - M2/M;) (28)
In view of Egs.(27) and (28), the ratio R/R is obtained as
R/R = /(1.0 - M2/M1) *k/k (29)
where E = value of k under the condition Mz = 0. k is related to k as
k/K = vV1.75/Cp (30)

where Cp = 1.75 - 1.05(M2/M1) + 0.3(M2/M1)? and < 2.3.

In Fig.15, (M2/M;) - (R/R) relations based on Eq.(29) are plotted together
with an empirical formula presented in Ref.[10]. The dotted and dash-dotted
curves are both obtained from Eq.(29), the former taking k/K = 1.0 regardless
of the values of k, and the latter using Eq.(30). From Fig.l5, it is ob-
served that the influence of the bending moment gradients on the plastic
rotation capacity is well estimated, even though the value of k/K is simply
assumed to be 1.0, regardless of the values of Mz/M;.

CONCLUSION

It is shown that the post local buckling behavior of wide-flange beam-
columns subjected to alternating bending is well predicted by the analysis
based on the plastic limit theorem for rigid-perfectly-plastic material.
.Empirical formulae estimating the plastic rotation capacity of the steel mem-
ber under monotonic bending are established, and shown that the experimental
results are well predicted by the formulae which contain several parameters.
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