MATHEMATICAL MODEL FORMULATION OF A TWO-STOREY STEEL FRAME
STRUCTURE USING PARAMETRE SYSTEM IDENTIFICATION AND
SHAKING TABLE EXPERIMENTS
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SUMMARY

In this paper, parameter system identification is used to formulate a
realistic nonlinear mathematical model to represent the seismic behaviour of a
two storey steel frame structure. The form of the model is a second order non-
linear differential equation with linear viscouse damping and Ramberg-Osgood
type hysteresis. The damping coefficient, elastic stiffness matrix and the two
parameters in the hysteretic model are established.

The suggested mathematical model of the two storey frame represents six
degree of freedom system which is transfered to two degree by static condesa-
tion method. The test of the model is done on programmed single component shak-
ing table for an earthquake input. The selection of the earthquake input was
done on the base of the sensitivity of the response of the structure to the
earthquake motion. The most sensitive response is obtained for Parkfield Earth—
quake N65W June, 1966.

The application of the parametrical identification process, makes pos-—
sible the formulation of a mathematical model which gives responses showing
correlation with the experimental results providing the condition to obtain
such an error in difference of the responses which is equaly dependent on
all of the selected parameters. Beside that, this approach enables simultaneous
investigation of the influence of a considerable number of parameters which
gives the possibility of better understanding of the real essence of the
dynami¢ behaviour of structures affected by an earthquake.

In the considered two-storey steel frame, nonlinear mathematical model has

been constructed assuming that the damping consists of . viscous damping and damp-
ing due to energy absorbtion, by the histeretic behaviour of the material.
The non-linear dependence has been defined by Ramberg-Osgood curves which have
priority over the choice of the shape of the nonlinear model in this case. The
first step in the investigation of the dynamic behaviour of the frame was the
construction of a model with six parameters. The results of this analysis are
presented in this paper.

TEST STRUCTURE AND TEST RESULTS

The test structure, consisting of two parallel single-bay, two storey,
moment-resistent steel frames, is shown in Fig. 1. Only the essential geo-
metric property data concerning the test structure are reported here. The
two frames, marked as F (front frame) and B (back frame), were disconnected
for 120 cm. They were comnected at the floor levels by fixed cross beams
and bracing angles, thus, the effect of a floor diaphragm rigid in its own
plane was simulated. Cross bracing systems were provided in the orthogonal
plane to resist motions transverse to the excitation @xis. As it is shown in
Fig. 1 the storey heights are 1L0O cm.

The frames were fabricated from standard rolled shapes of I8 sectioms,
having yield strength of 2400 kg/cm®. The same sections were used for beams
as well as for columns. All joints between girders and colwms are welded.

In order to provide a fundemental period of vibration in longitudinal
direction in the range appropriate to actual steel frame buildings, and to
apply a gravity load to the girders, blocks of concrete weighing about 500 kg
per floor, were added to the structure. Estimated weight of the steel struc-
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ture is about 550 kg.

The instrumentation scheme of the front frame is shown in Fig. 2. The number
of instrumentation points is limited by the number of available channels of
data aquisition system. Horizontal absolute accelerations and displacements
were measured in the direction of the table motion for both floors as well

as for shaking table using accelerometres and potentiometres as it is indicat-
ed in Fig. 2. Four channels of data aquisition system were used for joint
rotation measurement.. This was done by supporting a reference (instrumentation)
bar at the centers of two panel zones and measuring the rotation of the columns
face with reference to this bar. The instrumentation is so built that it does
not accept any moment, shear or axial deformation due to the motion of the
frame structure. The rest of 20 channels from the DAS system were used for
strain measurement in order to get a picture for stress-strain distribution

on the frame structure due to earthquake motion. The used strain gages were
post yield type.

The structure, with its weights in place, was subjected to many types of
table motions applied with progressively increased intensity. The aim of all
these runs was to find the earthquake motion to which the frame structure is
the most sensitive. A1l these runs weredone in linear range and only the last
run for the selected earthquake was done in a non-linear range. In table 1
are presented some of the runs with their characteristics.

TABLE 1

3 T -
haking table displacemet Max. acc. of

the second floor

Run Earthquake Span

max min . ( )
(em) {cm) g
1 El Centro 1970 250 2.60 2.90 0.384
El Centro 1970 500 5.19. 5.67 0.843
3 Monte Negro EQ 250 3.0k4 1.61 - 0.323
May, 1979
4  Monte Negro EQ 500 5.80 3.16 0.602
May, 1979
5 Parkfield N65E 250 2.h2 2.
1966 ‘ m 0-964
6  Parkfield Mod. 100 1.4 0.99 0.228
artificial
T  Parkfield Mod. 250 2.h9 2.98 1.12
artificial T
8 Parkfield Mod. 250 2.39 2.91
HgipyA 9 1.15
9 - 500 4 .69 5.77 2.40
10 - 850 9.40 T.03 3.10
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A1l runs shown in Table 1 are linear except run 10 which is non-linear. Mat—
hematical model formulation is done for that run.

FORM OF THE MATHEMATICAL MODEL

The first step in system identification is determination of the form of
the model and isolation of the unknown parameters. For the existing two storey
structure subjected to earthquake motion, the following set of second order
defferential equations is used:

UR+Cx+P() I ==-MIRE coeeeenenns (1)

In this equation M is the mass matrix taken to be constant, C is damping matrix
and P(x) is non-linear force matrix calculated from Ramberg-Osgood relationship.
I is identity vector, and X and X are corresponding acceleration and velocity
vectors.

For the considered frame, a system with 6 degree of freedom, two transla-—
tions and four rotations, has been taken into account. Ignoring the rotation
moments in the nodes, the model has been condensed in a system with only two
degree of freedom (translation at first and second floor). In this way, the
stiffness matrix becomes of the order 2X2, while the damping matrix is assumed
to be proportional to the stiffness matrix, namely:

C =YK trereiinnernnncennnnnneanes (2)

The matrix of the floor structure forces, is defined by means of Ramberg-
Osgood law for ascending or descending @ curve using the step-by-step technique
for solving the equation (1). Then, the increase of the elastic forces within
the styxucture for the dependance defined by the Ramberg-Osgood equation, can
be determined by two terms of the Tailor”s series developed near the point xi.
The incremental form of the equation (1) from which dynamic response is cal-
culated using constant acceleration method, has the following form:

M@i«r_cra_;_ciwr_si.g_:_& SoMIAR covennnnn (3)

TS represents tangent stiffness matrix at time ti, calculated from Ramberg-
Osgood curves.

The final step in this section is the isolation of the vector of umknown
parameters. For the model used here, six parameters are selected: damping ratio
Y, stiffness parameters K11, K12 = K21 and K22, A and R. So, the vector of the
isolated parameters is:

B = [Y, K11, Ki2, K22, A, R] R Y

The second phase in system identification is selection of a criterion
function by means of which the "goodness of fit" of the model responses to
the actual system responses can be evaluated, when both model and system are
forced by the same inputs. For the purpose of this analysis, the criterion
function is an integral mean squared error function that includes errors in
time histories of displacements at both levels.

e m = [xe D - x0T [xe D -x@] )

where x(B, T) are response qualities calculated from the model using para-
meters B and excitation %¥g(t). and y(t) are measured response quantities from
the structure subjected to the same excitation and T is a time interval proper-

ly selected.

The third phase of this process was selection of an algorithm for adjust-
ment of the parameters in such a way that the differences between modal and
system responses are minimized. Defining the vector of parameters Bi—l’
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the next step of B. will be an improved version of the parameters which will
give smaller value of J. The modified Gauss-Newton method used here is derived
by expanding the error fumction in a Taylor”’s series about the previous point

. and retaining only the first three terms. Setting the gradient of the er-
ror with respect to B; equal to zero, ve get:

B, =81 —oAE (g 1, T) . AI(Ey 1, T) eeeeeennn (6)

vwhere AH is the Hessian matrix, AJ(B m) is the gradlent vector and a is
a pos:.Hve scalar which ensures that t%ie error function is decreased in each
iteration. The step size of a in this analysis is calculated from quadratic
extrapolation.

For the identification process in this analysis, a special computer program
has been developed for PDP 11/L45 DEC computer.

MODEL FORMULATION

For the formulation of a non-linear mathematical model, the obtained
experimental results during run 10 (see the table) have been used. One of the
first steps in using parametrical system identification program is the selec-
tion of the initial vector values of the parametre. In this case, the initial
values are estimated on the basis of approximate analysis by which the initial
values of vector B have been obtained.

g ={0.0008, 1.50, 2.00,,4.00, 0.1, 6.0

The selected time of integration is T = 5.0 sec. Using the iterative procedure
according to equation 6, the finite vector of parameters is defined as follows:

8 = {p.oooh32, 1.37, 1.87, 4.51, 0.0126, 11.153

with program stopping tolerance of 1% for criteion function . The proportions

used in the analysis are the following: ton, centimeter and second. The stiff-
ness parametres represent initial tangent stiffness, while the damping matrix

represens viscous damping.

For the last established parameters, the response structure has been
calculated. The comparison between experimental and calculated responses is
presented in Fig.3 and Fig. 4 respectively for acceleration and displacement
responses at both floors.

CONCLUSIONS

The results presented in this paper are to be the first step in the in-
vestigations performed cn the considered frame. In the following -investigations
based upon these results and applying the iterative procedure of integratiom,
the parametres which define the model with 6 degree of freedom, will be determin-
ed. During the selection of the frame structure, the main point was the simula-
tion of such frame motions which will cause considerable clasto-plastic deforma-
tions. However, this condition was only partially obtained due to the defects
of the seismic shaking table.
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