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SUMMARY

This paper presents an analytical technique to compute maximum values
of the non-stationary response of a structure with non~proportional damping
acted by a stochastic non-stationary model of the ground shaking. The maxi-
mum value is calculated from the response three first time-dependent spec-
tral moments. These spectral moments are computed, by filtering, from the
generalized spectral moments, which describe the stationary dynamic response
of the structure. The generalized spectral moments are moments of the product
of the power and cross spectral density functions modeling the ground motion
by the elementary transfer function for each modal coordinate.

INTRODUCTION

Dynamics of Structures

The general form of the equation of motion is:

1) Mg+Cq+Kq=Q
in which M, C and Kare the inertia, damping and stifness matrices; q and
Q are the vectors of generalized coordinates and forces; and time derivaticn
is represented by a dot.

Let qb denot the coordinates modelling the points of support of the
structure (base) and q' the other (free) coordinates. Thus, after reordering
and partitioning to explicit support displacement, the following matrices
are identified: :

mM=[m// M/ c=[c/ c
[MAJ' Mdd:| [cdf Cdd:l

K=[K// K™ q=[d"] Q=[Q/
de Kdd qd Qd
It is assumed that there are no forces acting on the structure (Q/=0)
and the vector qb is a linear function of a vector of earthquake motions a;

hence:
2) ¢‘=Ta

where T is a matrix that establishes the correspondence between the ideali-
zation of the structure and the idealization of the earthquakemotions.After
defining the matrices M®, M/% C%, C/% K% and K/“ by the equations:
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Mé=M#“ T

Eq. 1 can be written fractioned in the two following equations:
3) Mfqu+cff i +K7 qf=._Mfa i—-Clia—K/"a
4 Q=M @ +C¥ ¢ +K¥Y ¢/ +M* i+ C*a+K*“a

Eq. 3 is the equations of motion for the structure subjected to the base
tonstraints, and Eq. 4 is only an algebraic equation for computing the base

reactions.

Modal Analysis with Damping

The consideration of the modes of vibration can significantly simplify
the solution of dynamic problems. In the absence of disturbances the motion
of a structure is governed by the equation :

5) M/ ijf+C” qf+Kff qf=0

This systems of second-order differential equations can be reduced to a
set of Nf second-order differential equations in a single variable, one equa
tion for each mode of vibration, Nf being the number of free coordinates.
However, this is only possible if the mode shapes are all solenoidal or ir -
rotacional,in.terms_gf viscous elastodynamics (Leitman an@»ﬁi;her, 1973), or
if the matrix (M// C'/) comutes with the matrix (M//  K//) , in terms
of matrix analysis (Caughey and 0'Kelly, 1963). As is obvious, these condi-
tions seldom occurr, but it as been demonstrated (Foss, 1958) that if Eq. 5

is rewritten as
o [ 0 M7 [@]+[M” 07 [@]=0
[\ el qf 0O K7/ qf
it is possible to find a set of 2N complex valued damped modes of vibration
which reduce Eq.3 to a set of 2Nf first-order differential equations. These

damped modes may be computed by methods presented in standard references,
e.g. in Ref. 4 and 5.

Let wy be the complex valued mode shape and p_ the complex valued natu
ral frequency of the m- th damped mode, and the"matrix defined by
W=[w, Wy,... W,] where N may be less than 2N°, as the significant response
is generally contained in a relatively small number of the lowest modes
(Clough and Mojtahedi, 1976), but shall be an even number because the dam-
ped modes appear in complex conjugate pairs.

The vectores wg, are normalized by the condition

T WL 2pe M +C Ty w, =1
where T denotes the transpose of the vector. The use of the orthogonality

conditions:
8) [PuWnl” [ O M7 [p,w] [0 m#n
w,, M/ Ct w, | 1 m=n

9) Pm Wi M/ (0] Pn Wy _ 0 m#n
W, 0 Kff W, - —Gpm m=n
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when applied to Eq. 3 rewritten in a form similar to Eq. 6, allows to write
the equivalent N first-order differential equations:

10} Jm=Pm Ym=myl ity a+k) a
where the y ~ are the modal coordinates defined by:
1) o/=Wy y=[ro yaem 3]’

and the vectors m},cl and kf;,“I) are defined by
me= ’—WT Ju

m MM

o= —wy el
ki= —w) K/

Eq. 10 is the fundamental equation for the analysis of structures with non-
-proportional damping.

GROUND MOTION IDEALIZATION

The model of the earthquake motion to be comnsidered is a non-stationary
process obtained by the superposition of time-segments of a number of elemen
tary stationary Gaussian vector processes stochasticly independent. Let
ar(t) ,T;: < t<T} be a sample function of the r-th elementary process, res
tricted to the time interval{T' , T;_}}, and make a(t)=0 for values of t outsi
de{T' , T } . The characteristics and frequency content of each elementary
process is determined by its spectral densities matrix S; . The non-statio-
narity is due to the differences in the time intervals at which the elemen -
tary processes act.The main problem in establishing a model for the earth —
quaké motion lies in the quantification of the matrices S, . This problem
is comprehensively dealt with in Ref. 7. The fundamentals for its solution
are presented, in an abridged form, in Ref. 8. For the present purposes it
sufices to state that the matrices S; may be quantified either fromthe peak
values of the ground motion or from response spectra ; and that this formu-
lation is sufficiently general to include translational and rotational com -
ponents of the ground motion, and differences in ground motion along the ba
se of the structure due to P, S, Love and Raleigh waves, or any unassigned
cause (Duarte,1978).

RESPONSE COMPUTATION

Maximum Values

When dealing with a probabilistic ensemble of earthquake motions and
associated structural responses, there is a need to establish rulesrelating
the probabilistic distributions, that are the true results, to conventional
"deterministic" results for use in design. For the present purposes, any
quantity will be represented conventionally by its mean value. The probabi-
lity distribution of the maximum responses will be assumed to be a Gumbel
distribution P(X)=exp (—exp (—a (X —u))) Its mean value is given by

12) X=u+7/u

X a a a _— u (ord v
(I) - In the aprendix 1, m‘zm (czm,k{m).denotes element i of vector m{'(c}, ki)
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where 7=0.5777222 is Euler's constant. It is not possible to estimate the
value of u and a directly from the stochastic properties of the respomse.
Thus, a and u are quantified for a Gumbel distribution equivalent to a Van-
marcke first-passage distribution P_. This distribution may be computed
from the three first time-dependent spectral moments, /1,/.2 and A3 (Corotis
et al., 1972) and is given by J.m

13) P(X>D)=Aexp(— oft) dt)
o
where « is the limiting decay rate of the first crossing probability and A

is the probability of the process-starting below threshold =z

(1—exp (=lg"? 27/40)'%))
1—exp (—1%/240)

14) a=2 ¢,

15) A=1—exp (—1*/24y)

The time-dependent frequency of crossings of the level I, ¢l » and the
time-dependent spectral demsity function shape parameter, g, can also be ex
pressea as functions of the three first time-dependent spectral moments:

16) ¢,=(‘27‘L’)—1 (2.2//10)”2 exp (—12/220)
1) ge=(1—i3igin)"

The equivalence between the Gumbel and the Vanmarcke distributions is
established by making coincident the 0.05 and 0.95 probability levels, [
and I,. These levels must be calculated iteratively, but as the Vanmarcke
distribution is very near the Gumbel distribution, the convergence is very
fast, and usually only two or three iteractions are necessary. The itera -
tion process is as follows: o

a) Make [,=025/i, and 1,=3./J,

b) Compute:
a=In(n P, (X>1)/In P, (X>1,))/(;—1,)
u=li+in(=InP,(X>1,))/a

c¢) Compute new values for [, and 12 from the Gumbel distribution with
the new values of a and u.
d) Repeat stepsb) and c¢) until a sufficient approximation is reached.

After a and u are determined, the maximum value is found from Eq. 12.

Generalized Spectral Moments

It will be considered that response l; can be any linear combination of
the modal coordinates and its time derivatives, and of the base displacements,
velocities and accelerations. Hence:

18) 1=M"y+C' y+K ' y+M* i4+C a+K“a
where the matrices ™, ...., K’ are established from static structural analy-

sis methods, and | is a vector incorporating all the responses |,
It is a well-known result of the theory of random v1brat10n§ that for
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stationary processes the spectral density matrix of the responses S1 may
be calculated from

19) S'=H™SH

where H is the transfer function matrix, S is the spectral density matrix
of the excitation and ~ denotes conjugate. The derivation of the transfer
function matrix is straightforward from Eq. 18 and Eq. 10, and its details
may be found in Ref. 7. Representing by X;; the (i,]) element of matrix X,
X standing for any letter, Eq. 19 is devel‘].oped as:

200 Sy=3 Y (Y Clhy ' +Y R, (@) Y Clliym
k1 e m e

+Z R¥ (w) Z ngjklm w”+Z Z R, () R} (w) Z Cgfjklmn w*) Skl

. . PP dd dp pd . .
Coefficients Ceijkl’ Ceijklmn’ Ceijklm and Ceijkln are defined in apen
dix 1, and they respectively affect the pseudostatic parcel of the response,
the dynamic parcel of the response, and the correlation between these two

parcels. The functions Rm (w) are defined as

21) R, (@)=(iw=p,)~"

and, in a certain sense, are the transfer functions of a one-degree-of-free
dom oscillators with non-proportional damping with the same complex valued
frequencies as the damped modes of vibration of the structure.

As in the classical modes of vibration case (Vammarcke, 1972) the pro-
duct Rm(w) R;‘l(w) may be decomposed as:

22) R, (@) R} (@)=(Comnt Cimn @™ ") [ Ry (@) P +(Copm+ Clom @71 | R, (@) [P

Coefficients Co , C

mn’ imn’
valued frequencies p,=uo,+if, and p,=a,+if, and are defined in apendix 2.
Full details of this decomposition may be found in Ref. 7.

c' and C'_ depend only on the complex
onm Inm

The notion of spectral moments, usually restricted to power spectral
density functions, is broadned to include spectral density matrices. Acoor-
dingly, the c - th spectral moment of the excitation is defined as:

o
23) /.'cklEJ‘ o Sy do
0
The generalized spectral moments are of three kinds, and are defined by:

24) ;.;,‘,msf o R, (@) Sy do
1]

25) ;‘:"k'mEJ. o RY (@) Sy do
0

26) /'.ﬂ,,,,-‘—-J o | R, (0)|? S, dow
0
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To compute maximum values only the spectral moments defined for the dia
gonal elements of S! are necessary. These moments may be computed from Eq. 20.
Using the results expressed by Eq. 22 and the definitions of spectral moments,

the spectral moments of the response may be written as:
27) /'.,,-=Jat o Sk dw=
0
=Z Z ( Z Céfu ;'(c+e)kl+z Z Cllim He+ eriim
+Z Z Cex]klm /'(t+e)klm+z Z z Ceuklm (; Comn i{il+e—p)klm+

+ Z Cpnm A(c+ e—p)kin ))
Thus, in the stationary case, the spectral moments of the response of a
structure with non—-proportional damping can be expressed exactly in terms of

the spectral moments and generalized spectral moments of the excitationm.

Non-stationarity Idealization

Because it is assumed that only maximum values are of interest, the
non-stationarity of the structural response may be idealized by a very simple
model, and described only in terms of the spectral moments of the excitation
and the generalized spectral moments.

For each complex valued frequency p,=&,+if,1is associated a real circu-
‘lar frequency w,=(o2+p2)"? and a real percentual damping {,=a, /(oZ+pZ)"*
Consider now the respomse to the r—th elementary stationary Gaussian vector
process, acting during the time mterval{ Ty ;. The time-evolution of the
dynamic parcel of the response may be rougﬁly evaluated, although with suf-
ficient accuracy for the present purposes, multiplying the sample functions
of the stationary response of each modal coordinate Yo by a time function

Ymr defined as:
Ve =0 1<T;
28) {l//m,=(l—exp(—ic,,.w,..(t—T,’)))”z e
Yr=(€XP (=2 {py Wy (1=T")))"2 —exp (= 2(, @, (1= T, )12 T <t

This function is defined bearing in mind the transient behaviour of
structures when suddenly exposed to, or suddenly shielded from a statiomary
random excitation. The errors envolved in this approach arise basically from
the neglect of the more important high-frequency content of the starting-up
modal response, as compared to its stationary content, and from the variabi-
lity that remains in the modal response after the excitation has ceased.
Happily, these errors have a tendency to canceal each other, and numerical
simulation has shown they are not important for usual structures and usual
models of ground motiom.

The time-behaviour of the pseudostatic parcel is taken in account with
the help of a function Yor ©obviously defined as

2) {wﬁo 1<T or T'<t
Vo=1 TSIST/
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Let  Agyy .- .,lﬂhw be the spectral moments computed from the spectral

densities matrix S; . Then, the time-dependent spectral moments of the res-
ponse may be computed from a generalized version of Eq. 27:

30) }’L‘l (t) z Z Z C eijkl Z ll’ar (c+e)klr+
+Z z Celjklm Z l#mr ww (c+e)klmr+z Z Ceukln Z WOr tl/mr }'zrl:-i-z)k!nr""

+Z Z Z Ceuklmn (z Cpmn Z ll/:lr 'J‘:z'l+e—p)klmr+z Cpnm z }-}i‘+e — p)kinr ))
P r r

With these tlme-dependent spectral moments, maximums values of the res-—

ponse can be computed.

FINAL REMARKS

The principal usefulness of non-proportional damping models is to make

straightforward the idealization of systems for which the damping cannot su
posed to be uniformly distributed. Such is the case, for instance, in soil-
-structure interaction situations, in reinforced concrete-steel composite
structures and in spring supported flexible equipment. The principal diffi-
culty in a non-proportional damping analysis is to compute the damped modes
of vibration as, to the author's knowledge, there is no method equivalent ,
in numerical efficiency, to the space iteration or determinant search method

for
the
way

non-damped modes of vibration. However, the use of non-damped modes as
assumed shapes for a standard Ritz analysis has proved to be a sensible
to reduce the dimension of the problem to workable proportions.
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APENDIX 1

a;= —Mp, my; C‘O,?jklh =K €jm C‘l’gjkln =HC}x ejm—Kik dju)
b= Ci, myi+ Mg, ¢ Colian=—M3y €ju+Chi dj+ Kl G

Cinj=K§, mi+C5, )i+ Mi, kY ngjkln =i(M5y dj+Ch Ciu—Kik bju)

dyj=—Kj, oy —Ci, K} Cz‘i’jkln = =M Cju+Cii bju+ Kk @ju

e;,;= —K§, ki Cg?jkln =i(M$ bj +Cii aju) Cg?jkm =—Mj, Gjnt
Cilin=Kix Kj C‘(i)ll?jklm= K5 eimic C{Ii,jkl:}x =i C§; eimp+ K dipy)
Ciy=i(Ch Kf—K5, C3) C?i,jklm =—Mj €~ Cj Qi+ K Comi

ngu =—(M ?k K}"x— ?k ;1 + K?k M‘}, ) Cg}zzjklm =i— M 51 dimk - C;l Cimk T K'}l bimk )

ngjkl =—i(-M ‘i'k Cﬁ + c‘i'k ;1) Ci’.{jum == M;( Cimk — C}x bimk + K';t Qimk

Cﬂju =Mj; ;1 C‘;'i'jum =i(—M ;l b — C;l i) Cg‘l?jklm =—-M ;1 Aimk

C‘(’)‘ijklm= €imk €jnl

cﬁjklmn=i( ik €jnt— Cimic dj)

Cg‘x!jklm:cimk Cjnt— Aimi djmtF Cimi Cimt

ngiiklnm'_:i( Bimi €jnt = Cimk jnt + Aimkc Cint — Cimk Djmt)
Cltimn= Bimk €jnt—bimk djnt+Cimx Cint = Dimic D+ Cimx Ajm
cgdijldm:i(—aimk s+ Dimic Cint = Cimk Dt + dimic Q)
Cﬁ'jkbﬂn:aimk Cint+ Dimi Djmt+ Ciom Wjmt

C4tmn = — e bjut+ Dimk )

ng,kl»m =Aimk Ajm

APENDIX 2

_a:l+ﬂ:l v 2((am_an)z+(ﬂm—ﬂu)z)

"TREE TSP ) R+ +2(Ba—1Fy)

Byy=—rBpn  Ap=(2+B,,+B,.)2

Arm=(2—B,,—B.)/2

D =4(“m ﬁn—a. ﬂu) (ﬂu_ﬁm)—z(an'—am) (“n%‘*ﬁ:) ("—-1)
" 4(Br+rBi—(1+r) B B)—(1—1%) (i +B2)

am-an+( 1 '—r)D:un

Dmn=— D;m C:IM
’ z(ﬁm—ﬁn)

Cnl!l == C;lm

Comn=(Amn+t1Cpn)2  Comy= (A +iCom)2  Cipu=(Bp+iD,,)/2  Cipm=(Byy+iD;,)/2



