A RELIABILITY THEORY FOR ASEISMIC DESIGN
AND FOR PREDICTION OF THE SAFE LIFE OF INDIVIDUAL STRUCTURES

V. V. Bolotin 1

Summary. A version of the reliability theory is developed with special
application to the aseismic design of structures. Earthquakes are presen-
ted as a stream of random events, and the ground motion at a given site as
a nonstationary random process. A probabilistic model for strong earth-
quakes occurence is developed taking into account the seismic history in
neighbouring focal areas. Strong earthquakes are interpreted as results of
the development of a slow random process including instrumentally measured
precursors. The earthquake occurs when this process reaches a certain
upper threshold which is a random value depending on the geological condi-
tions in the focal area. Clustering of earthquakes is incorporated by
conditional probabilities for corresponding lower thresholds.

Using the proposed model together with the methods of the reliability
theory and the conventional models for dynamic response and damage accumu-
lation under seismic input, a united approach to the aseismic design of
structures is developed with applications both to the design and opera-
tional stages. In the latter case, observation datas concerning the opera-
ting structure are used. As the unified approach is too complicated for
analytical realization, the Monte-Carlo procedure is applied beginning
from the simulation of seismic activity up to the simulation of damage
accumulation in the structure and the assessment of safety and reliability
factors.

General concepts of the theory of reliability. Following mainly to refe-
rences (1, 2] introduce the general concepts of the theory of reliabili-
ty. Let consider a structure or a structural element under random loading
(the term "structure" is used further). The state of the structure is
described by the vector W which is an element of the state space .
Evolution of the structure in time -+t is described by the random vector
process w(t) . Basic equation to evaluate the process W () is the ope-
rator equation LW =¢q, where q/(-t) is the random vector process in the
load space which includes environment of the structure. Choice of the
spaces and and the cperator [_J is a problem of the mecha-
nics of structures.

Operational and service requirements put restrictions on parameters
of the structure and its behaviour. This properties are described by the
vector I which is an element of the quality space . A subset of
states of the structures admissible from the point of view of operational
requirements corresponds to the open region S2  in the quality space
The boundary ®dR=T corresponds to limit states. The first excursion of
the process v (1) from the region &2 (the first positive crossing of
the surface ' ) corresponds to the failure (Fig. 1).

The failure of a structure is a random event. The most important
concept of the reliability theory is reliability function P(t) « This
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function is equal to the probability of non-failure operation of the struc-
ture during the time segment [+, , t] :

P@:):E{U(’c)ég;‘té[{o)‘t)} ¢5)

Here]?{‘} is the probability of a random event. The risk function Q(t)

and the failure rate A(¥) are expressed by the reliability function P({):
1

P . @

P )

This. concept can be generalised to cases when repeated failures, repairs
and recovers are included into consigeration.

Q@ =1-P&) , Ad)=—

The assessment of reliability factors requires taking into account
random properties of structures. On the design stage, .structure is to be
considered as a randomly chosen element from the general sample of similar
structures. Let properties of the structure to be characterized by the
random vector ‘T ., The conditional reliability function for the struc-
ture with the given value L is

Pil)=Plrlnesm); T Lt,,43} .

where U(iJ’b) is the conditional vector process. The unconditional (comp-
lete) reliability function is

Pw= PG, @

where Rtﬁb) is the corresponding probability density.

One of the applications of the reliability theory is prediction of
the reliability and residual life factors for an individual structure on
the operational-stage. An apropriate procedure was proposed in [3]
using current inspection data, load history records as well as apriori
probabilistic information available on the design stage. The procedure
consists of the estimation of the state of the structure at the given
time moments and the stochastic extrapolation of the random vector pro-
cesses upon the next time segments. Calculated probabilistic values are
to be interpreted in the Bayessian sense as they correspond to an indivi-
dual object.

The extrapolated quality process is LrCtlﬂﬁ-Tk) where the symbol T,
denotes all amount of datas concerning the given structure which were
obtained from the inspection up to the last time moment -+, (Fig. 2).
The value of the vector v is to be considered as a random one be-
cause only indirect methods of its estimation are available. The corres-
ponding probability density«Pkcbl K) takes into account information col-

lected up to the time -fk « The conditional aposteriori reliability
function is ’

P(t|r,T)=P{rcir,T)eRk); ve (v, 13} )
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Further details may be found in [ 3] where an optimization approach
is proposed to estimate the ''best" moment for the next inspection, repair
or stopping of service.

A probabilistic model for strong earthquake occurence. The existing methods
for assessment of seismic risk [4, 5] are based on the ‘macroseismic
formulas obtained by statistical treatment of observation datas at the most
interesting seismic regions. The Poisson stream of events is mostly ac-
cepted as a model for the sequence of strong’ earthquakes. The reason is
partly in simplicity of the Poisson model and partly in lack of statistical
information. Deficiencies of the Poisson model are well known. The main
defect is a constitutional inability to take into account seismic history

at a certain site. This defect seems to be especially serious if the problem
of prediction of the reliability and safety factors for an individual opera-
ting structure is considered.

A modern approach has to incorporate both history effects and recent
achievements on the field of earthquake prediction [ 6, 71 . Most of the
proposed methods of prediction are based on measuring of precursors, among
them mechanical parameters directly connected with geotectonic processes.
These parametres usually are continuous and monotonously growing time
functions if an interval between two earthquakes is considered. During
earthquakes these parameters-are subjected to discontinuities which sizes
are in correlation with the magnitudes of the corresponding earthquakes.
Hence, the natural approach to modelling of seismic activity considering
seismic history and precursors is based on consideration of a piece-wise
continuous processes. It is also natural that the threshold values of
these processes have to be random ones with the probability distribution
depending on geological conditions in the considered focal area. Clustering
of earthquakes can also be taken into account. As the time between two
neighbouring earthquakes relating to the same cluster is small in compa-
rison with the expected time between two neighbouring clusters, a slow
variation of the precursors during the clustering period may be neglected.
These ideas lead to the model illustrated in Fig. 3. Here 4 =9 (t(_vk)
is the precursor parameter process depending on the set of information
available to the last observation moment -t, . It is assumed that this
moment is after the last cluster; i.e. the function 4= A(x\T.) is
continuous in the interval (4t , £ ) . The upper threshold value of the
parameter 4 x is denoted 4% . It is assumed that the probability
density Py (4 does not depend on history. A first drop corresponding to
the first earthquake in the cluster is determined by the lower threshold

44 . It is assumed that 4, is determined by the conditional proba-
bility density 'P4(Ari[1*). Second drop is determined by the conditional
probability density /Pz(df }4%) , etc. The sequence of earthquakes termi-

nates when the parameter 4 drops lower than a certain value 4 *
This value can*Eg a random one; in that case the conditional probability

density'?*K.Qﬁ ) is to be given. After the termination of the cluster,
growing of the parameter < proceeds till to the next cluster, In prin-
ciple, each cluster can consist of a single earthquake only.

To present the proposed model in details, we need a set of additional
assumptions. They include the following ones: the functional dependence
A=A~E \‘FK) of the parameter 4 _ ; a set of conditionalﬁProbabili-

ty densities /Vq (,): l 'Sf) , PZ(A;‘]'S;‘) yeee as well as Prx () *lz)*);
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functional dependences of macroseismic parameters (such as the earthcuake
magnitude, the amount of released energy, etc,) on the drops 3"— 377,
4:.—-64 y o e .,.s**—-s* . The central problem is to agree prqposed
analytical equations with generally acknowledged macroseismic formulas.
Among them are the formulas [4])

N(M)"No UIf["P(N‘MA}, £ =£oQ/x‘T[°((M— m\?)] (6)
for the average number of earthquakes y:(rq) with magnitudes equal or
greater than M and the amount of released energy £ .

A number of special cases were considered to make agreement between
the proposed model and Eqs. 6. For example, the function 3= 1(¢\’Vk) was
teken in the form

» 4
A= ék“'g({_tk) ’ -L-E (tk)%k-t-‘f)’ /‘L>D (7)

and the upper threshold value distribution was proposed to be the Weibull
distribution

* 5*~'40 M4 * A P

F*(’) )-‘-’4““10[" T) :]1 A 2 0 @
Here § , My , 3 are positive constants, and dp is a nonnegati-
ve constant. Eq.. 8 corresponds to ultimate strength distribution in the
theory of brittle fracture (13 and therefore is in close relation with
the considered problem. The mutual use of Eqs. 7 and 8 results in the
probability distributions for time periods between two neighbouring clus-
ters and for amount of released energy which are related to the Weibull
distribution also. But to make agreement with Eqs. 6 we need to introduce
a very special relation between the energy E  and the drop of the para-
meter A

Another upper threshold value distribution was taken in the form

: ¥ 3t VY x_
F* (3 )=1 _'( 3*L_<3a*) y A2 4y (9

where Jd4, and M, are positive constants, and the lower threshold
value 4*% is assumed to be deterministic. This distribution seems to
be at the sight artificial in comparison with the Weibull distribution.
But in fact, because the stronger earthquake are selected, the distribu-
tions for macroseismic parameters, as a rule, have to be truncated omnes.
Eg. 9 together with Eq. 7 result: in Eqs. 6 under the assumption that

the precursor 3 is a characteristic strain or stress in the focal
area and th; released energy E is proportional to the power g of
the drop A" — 4 « If M =1 (the linear increasing of the precursor

between earthquakes), Mg = 2 (the linear stress-strain relation); and
/ﬁs = 1, we obtain oC =4 and p = 2,

The pxop9sed model permits to estimate seismic risk factors with
account to seismic history. For example, let consider a single earthquake



x %
and let its magnitude to be a continuous function M= 9 Qi,'ﬁ ) . The
probability that an earthquake occurs at the time segment (%K,‘t] with
the magnitude equal or greater than ™ is

* %
Q(ME\T) = §f Pus ™ "fyl’* (0*) ds ds (10)
Integration area is A= &5* s A%x :.’)* \(5(-I:\Tk>‘, 9 @ié*‘) ZM} .

Monte-Carlo procedure for aseismic design. The sequence of ground mctions
at the given site ( is a result of earthquakes occuring in the neigh-
bouring focal areas &, , ¥, ,. .. (Fig. 4). The sequence of earth-
quakes in each area is described by the model presented above. The size
effect, i.e. dependence of the probability distribution on the volume of
the area or on its surface can be included in Egs. 8 and 9 in the same
manner as in the theory of brittle fracture. Using known semi-empiric atte-
nuation formulas [ 4,5,81 , we can estimaté the maximum ground accelera-
tions at the site. There are analogous formulas for the duration of earth-
quakes, the dominant frequencies, etc.

The common analytical presentation of the ground accelerations (1,
9 -11] is

a(d) = ZAj(Jc)kpj&), t20. an
3

Here AQQE) are pseudoenvelopes, and \Pﬁﬁ) are segments of stationary
random processes with zero mathematical expectation. If the "rapid" time

+ < 0 we put Q&)= 0. Parameters of the functions A,J @) and of
the spectral densities of the processes %3'(#0 are functions of macrosei-
smic parameters for the considered site. Using the proposed model for
strong earthquake occurence, macroseismic formulas and the nonstationary
random process model for ground acceleration given by Eq: 11, we can in
principle estimate reliability factors given by Eqs. 1- 5, such as the
reliability function, the risk function, the failure rate, etc. Evaluation
of structural response to a nonstationary random process is a complicated
problem which can be solved analytically only under very simplified assump-
tions. For example, even for nonlinear one-degree-of-freedom systems nume-
rical statistical simulation (the Monte-Carlo method) is the only way to
get numerical results,

The general idea of the approach proposed below is to apply numerical
statistical simulation through all stages beginning from simulation of
seismic activity up to assessment of reliability and safety factors of a
structure. The first step is to simulate the process 15(&\'Tk using
known initial éond%;ions and probability distributions for the threshold
values 9 sy 34 , etc. The second step is to simulate seismic
inputs at the given site. The third step is to simulate structural respon:
se to seismic inputs, including damage accumulation due to comparatively
weak earthquakes. Statistical scatter of structures and materials proper-
ties are to be taken into account here also. The last step consists in
evaluation of the reliability parameters and their comparsion with its
codified values. The complete program is in fact a multiple perfomance of
expected seismic activity at the given region and of the corresponding



behaviour of structures during their service life. It is essential that the
program is applicable both for structural design against earthquakes and for
prediction of the individual safe life of an operating structure.

The volume of computations grows if a high reliability level is requi-
red. Roughly speaking, the number of samples must be much greater that the
inverse value of the codified risk level. To diminish the volume of compu-
tations, a semi-analytical approach is recommended. The Monte~Carlo method
is applied only for estimation of structural risk under seismic inputs with
siven parameters. This conventional risk is comparatively high. Therefore,
its estimation does not require too much computational work. The complete
risk is to be evaluated analytically using formulas similar to Eq. 10.

As a model example for prediction of the individual safe life, the
one-degree-of-freedom bilinear hysteresis system was considered. The resi-
dual displacement U (t) was taken as the quality factor entering in Egs.
1, etc. The initial value was taken U, = 0,2 at the last observation
time ‘l:,, = 5 years, and the critical value Uy = l. The seismic acti-
vity region was divided into six equal areas with charactevistic distances
to the considered site Ry = 25 km, Ry = 50 km, R3 = R4 = 100 Im,

¢ = 150 km; R¢ = 200 km. The seismic activity level was assumed
the same for all areas. The linear law in Eq. 7 and the Weibull distribu-
tion given by Eq. 8 were assumed at 4 = 0, )l,) = 2. Clustering was
not included into consideration. The reoccurence time for earthquakes with
magnitudes ™M 7 5 was assumed T. = 50 years for all areas. The
last occurence times were put .4 = 1, =10, -3, ~15 and 4 years corres~
pondingly. Macroseismic formulas were taken from L[4, 5, 8] . A special
form of Eq. 11 with entering numeric datas was taken from (1, 91 .

In Fig. 5 a number of sample processes U(%(T,) are shown inclu-
ding the '"worst' 'and the '"best" ones chosen from 50 samples. The simulated
aposteriori risk function Q (t TO) is plotted here too.
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Fig. 1. Problem statement in the reliability theory.
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