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SUMMARY

This paper proposes time domain models, AR, MA and AR-MA modeis, for
multi-dimensional nonstationary stochastic processes which are observed in
the characteristics of earthquake ground motions, and then develops the
theory of identification and simulation of the system. These models can be
applicable to the identification and simulation problems of many engineering
systems. This paper also discusses the relationships between time domain
models proposed here and frequency model for multi-dimensional nonstationary
processes which is proposed by one of the authors. Finally, numerical
simulations of earthquake ground motions are presented.

INTRODUCTION

Simulation methods of multi-dimensional or one-dimensional stochastic
processes with nonstationary characteristics of amplitude and frequency
contents have already proposed by many researchers. However, these
similation methods are normally represented by frequency domain models. On
the other hand, Akaike [1], Box and Jenkins [2], Hussain and Rao [3], et.al.
discussed the time domain models, namely, autoregressive (AR) model, moving
average (MA) model and the mixed (AR-MA) model. These time domain models,
however, have not been in suitable forms directly applicable to the
stochastic processes with the nonstationarity in the amplitude and frequency
domains, especially for the multi-dimensional cases.

Although both models, either in time domain or frequency domain, have
their own useful advantages for estimation problems of many engineering
systems, time domain models are more useful, because of their simple forms
and of the forms directly applicable to such as control problems.

AUTOREGRESSIVE (AR) MODEL

An autoregressive model for multi-dimensional nonstatlenary stochastlc
processes, Xj (t) 3 i=1,2,...,m with zero mean is given by

i () .
x;(3) = El 2y Piplked)x(3-k) + g5 (3) 5 i=1 2250 eeom (1);‘
where, j is an index of discrete time t, that is, t=jAt ; j=1,2,...,N and
At = equal time interval of the given time series. M(j) is a positive

integer. ¢€;(J) is an error function and its expectation Ele;(j)] equals
zero from Eg. 1, because of E[x4(3)] = o.

The coefficients bip(k,j) are chosen in such a way that the mean
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square error % E[E?(j)] should be minimum under the condition that the
original datai=l xi%t) satisfy the model given by Eq. 1. Therefore, in
order to identify bjp(k,j) at time j, the index j is fixed first and then
letting the partial gerivative of 'Z'E[Eg(j)] with respect to bnp(r,j) be
equal to zero, we get i=1
. n M(3) ] (2)
Elx,(3)xq(3-r)] = pél 2 by (6,3 Elx (- )% (3-r)

The crosscorrelation function in Eq. 2 is a function of two variables.
Therefore, using the data chosen from the neighborhood of time jAt, and
assuming that the chosen data consist of a stationary gaussian process, the
crosscorrelation function can be assumed as follows.

i

Bl (9)xg (301 = s 3 (s )xgle-r) (3)
and L
Ex, (3-k)xy(3-x)] = §ﬁ1s=§_N'xp(s—k)xq(s—r) (4)

where, N' is a positive value and N'<N. From Egs. 2,3 and 4, we get n-th
order simultaneous matrix equation as follows.

s . -1
Ba(0]  [Xp(®) %) eeen X (007 R (0)

Bio(0)| = | Xipld) Kppld) oo Xp()f | Fppla) (5)

-
Ce . .

B ()| [ X3y X () i X () {FL(8)

n nn nn

. xp(s—l)xq(s—l) xp(s—2)xq(s—l) e xp(s-M)xq(s~l)
Pq(j) = s=§—N' xp(s-l)xq(s-2) xp(s~2)xq(s-2) - xp(s—M)xq(s—Z) (6)

xp(s-lixq(s—M) xp(s—zixq(s—M?'..q xp(s—Msxq(s—M)

bnp(1,3) . x,(s)xg(s-1)
J
B R I OO R ke IS
banMsj) . xn(s)iq(S—M)

where, $=1,2,...,N n=1,2,...,m lr=l,2,...,M(J)- q=1,2,...,n
j=1,2,...,N, and M = M(Jj) in Egs. 5 to 8.

If this AR model is applied to such as an earthquake accelerogram,
Bnp(j) can be assumed to be nearly equal to B__(u) when j and u are close,
since the nonstationarity of the earthquake acCelerogram changes gradually
in the vieinity of time j=1,2,...,N [L]. Therefore, B,,(J) are identified
from Eq. 5 at the specified time with a constant interval AT which is bigger
than At, that is, AT=alAt ; a = integer and a>1. And then, Bpp(u) between
jAt - (AT/2) and jAt + (AT/2) are considered that they have the same
constant value of Bnp(j), or aré determined by interpolation. Using the
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above procedure, the computational time can be greatly reduced. In the
calculation of Eq. 5, the values of x;(J) at negative time are needed when
time j stays in early stages. In this case, proper dummy values of xi(j),
e.g. 0.0, can be used for the calculation.

If Eq. 5 is satisfied, we can see that g;(j) and x4(j-r) are mutually
independent for r=1,2,...,M(j). But, if xl(j are app%led to the engi-
neering fields, for exa.mple ; earthquake motions, it is natural that the
autocorrelation decreases rapidly when the time lag increases. Therefore,
it can be assumed that €£;(j) and x,(j-r) are mutually independent for
r=1,2, LM(5),M(3)+1,. ..,°°. Sincé €.(j-v) is given by the linear summation
of Xq(J—V) xp( j=v-1), ...,xp( -v-M(j))"; v>1, as shown in Egq. 1, and also
satisfies thé above relation of independence, it is seen that €. (j) and
eq(g—-v) ; v21, are mutually independent. Therefore, we get

E[ei(j)eq(j—v)] =0 ;v2l, any i and q (9)

In order to generate the error function ei(j), the following cross-
correlation matrix can be used.

P (3) 53) e (D)

%) =) B ... ) (10)
2 (3) o2 ... o2 (3)
where,
2 ~ 1 I
05q(3) = Eles(J)eq(3)] = zfv Z_N €1 (s)eqls)
CogHn M(3)
=‘§;— i?—N {xl(s) - Z' 2 b 5(k,8)x(s-k) }
' M(>3)
{xqls) - 2 2y P> s)xp(s-k)} (11)
Now, let us,i‘ntroduce the followlng matrix equation
Te, (] e 0 £ 7
E3G) =e,(3)] = [0,(3) €5(3) £l = CE (12)1
e (0] e e - )| &

where, the matrix C is a lower- triangular linear transformation matrix, and’
. ; i=1,2,...,m are mutually independent random variables with zero mean
and its variance is unity. From Eq. 12, we get

E[E(3)ET(3)] = C(HEE £TICT(5) = C(5CT(5) (13)
Therefore, from Eqs. 10,11 and 13, we get the following equation.
23 = C(3ET() (14)
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From Egs. 10,11 and 14, €;(j) can be generated.
Nonstationary cross‘spectrum is defined as follows [5].

S15(0,8) = E[2X; (0,0)K) (,8)] 3 —ocuce -t " (15)
where, —iwu
X (w,t) = [TW(t-u)x; (w)e ™ an ;2= -1 (16)

‘Although details on the data window W(t) can be seen in Fef. k4, its
characteristic is considered as the weighting function. Therefore, appling
the weighted Fourier transformation to the both sides of Eq. 1, we have

~iertAt

X (0,3) = 3 W(3-rhs(o)e

M(J) w
3 zj I W(3-r)pyp (i, r)xp(r—k)e'lertA

2 t
p=l kK=l r

il

. 3 J(3-r)ei(r)e —lordty (17)
r=-%°
Let assume that bip(k,r) changes gradually with the change of time r.

And since £;(r) is a nonstationary white noise, letting

E;(w,3) = azo W(j-r)ei(r)e'i“’rAtAt (18)
r=-®
we get the following equation in matrix form. \
X{w,3) = B(w,j)X(w,3) + E(w,J) (19)
where, T
X(w,3) = {Xl(w,j) Xo(w,3)  eeee Xp(w,3)] . (20)
Xp(,3) 2 3 W(g-skdy(a)e 0 (21)
Hmﬂ—[hmﬂ)Eﬂ%ﬂ e %WJHT ] (22)
(J) - A
(J) ~iwkAt M(3) ~iwkAt
B(w,) =| 3 bgl(k et 2y beelde e (23)
M(3) -~ —iwkAt ) (J) o~ iukAt
_k§-1 bml(k,j)e ......... z bmm(k

Therefore, letting I - B(w,Jj) = H(w,3), we get H(w,j)X(w,j) = E(w 3.
From this equation, we get

* * *
Hw,3) X(0,3)X (0,30 " (w,3) = E(w,3)E *(w,3) (2k)
Taking the expectation of both sides of Eq. 24, and following the definition
of nonstationary spectral matrix, we get
* - * -
S(w,3) = BIZX(0, )X Tw,3)] = H w05 (0, ) T (w,5)} 7 (25)

where, Ss(w,j) is a nonstationary cross spectral matrix and given by
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2 ,. 2 ,. 2 ..
03183} o72(3) .... o7(3)
At 2 2, 2 ..
—'1?(3 “"“ 021(3) UEQ(J) PN Ggm(J) (26)
2° 2: . 2: N
Gml(j) Gme(.]) cenn cmm(J)
3 —(m/8t) < w g (w/At)
After identifing by,(k,j), we can immediately calculate the
nonstationary cross spectrum by using Eq. 25.
MOVING AVERAGE (MA) MODEL
A multi-dimensional nonstationary MA model is given by [6]
i M(3)
x;(3) = pgl 21 hip(k,d)ap(i-k) + €:(3) ; i=1,2,...,m (27)

where, symbols j and M(j) have the same meanings in AR model. And ap (3)
are m mutually independent random variables (white noise) with zero mean
and its variances E[a g( 3)] are equal to o2.

Following the criterion of minimizing the mean square error: Z E[EQ(J)]
and pursuing the same derivation in AR model we get

Jen _n M(j) N 8
S=§?_N,xn(5)aq(8-r) = pgl kz-l np(k,J) Z a?(s—k) (s-7) (28)
However, since ap(j) and aq(u) are mutually 1ndepeudent if p # q, we have
JEN' ap(s-k)a,(s-r) =%2N'02 3 P=a (29)
=3-N' P a 0 5 P#Q
Therefore, Eq. 28 can be written as follows.
-1
an(j) =Aqunq(,j) ; n=1,2,...,m g=1,2,...,n (30)
where,
hpg(1,3) xp(s)ag(s-1)
3N
Hng(3) = | my(2,3)) - (31)  Fpg(d) = s=§LN' xn(s)?q(s—Z) ...(32)
hanM,j) xn(s)éq(s—M)

- 1 2 -
Rgq = 2N'0®T ... (33), M =M(])

Hence, hip(k,j) can be identified from Eq. 30.
The relationships between the nonstationary cross spectral matrix

Sy(w,j) and the identified by p(k j) can be derived by assuming the same
approx1matlon in the previous section as follows.

X(w,3) = H(w,3)A(w) + E(w,t) (34)
where,
X(03) = [%3(0,3) Xplwsd) «nen Xylw,)1T (35)
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Alw) = [A(w) Ap(@) ... Ap(@)]T (36)

M(3) s
H(w,3) = 30" | ra(k,d)e 1wkAt ;
hgl(k’J )e—ikat h22(k,j )e_ikat (37)

hyp (k5 3) Flwkht L hy (K, 3) -iwkAt

From Eq. 3k, we get
S(,9) = ZEN(0,1)X (w,)] = H(w,)Sa(@)H "(0,3) + Selws))

L0, Tw,3) + Se(w,3) 5 ~(n/be) s (n/8%) (38)

NUMERICAL CALCULATIONS AND DISCUSSIONS

In this section, an appropriateness of the simulation model proposed
by Eq. 1 is discusses. The earthquake acceleration records used for the
numerical calculations are three components of San Fernando earthquake in
Feb. 9, 1971 [7] which were observed at a basement of Millikan library,
Calf. Inst. of Tech. These records which are digitized with equal time
interval of At = 0.04 sec are illustrated in Fig. 1 and their physical
spectra are shown in Figs. 2 to k4.

In order to determine the nonstationarity in time domain, the accele-
ration record is divided into small groups with equel time length of 2N'At
sec by shifting the central time jAt with constant interval AT = 10At sec
as mentioned in the previous section. Then the effects-of M(j) and N' are
first examined for one-dimensional model, that is, m=1 in Eq. 1. In this
case, M(Jj) at time jAt is determined by appling the Final Prediction Error
(FPE) method proposed by Akaike [1] under the assumption of partial
stationarity of the processes for each small group. And then, M(u) for
jAt-(AT/2)sugjAt+(AT/2) are considered to be the same constant value of
M(j) at time jAt. “Bpp(j) at time JAt are determined by Eq. 5 and B'np(u)
for JAtgugjAt+AT are interpolated by second order polynormials. ’

From the above examinations, it seems that M(J) does not give any
serious effects to the simulation results. Therefore, we choose that M(j)
is constant and equals to 4. And we also choose N' to be equal to 25.

With these values, the simulations of three-dimensional waves are carried
out with different random variables £. One of these simulated waves is
shown in Fig. 5 and the physical spectra of its each component are shown in
Figs. 6 to 8. As can be seen from Figs. 5 to 8, it seems that each simu-
lated wave contains higher frequency content waves than the original waves
do and the maximum acceleration of U-D component of the simulated wave
becomes higher than that of the original U-D component.

CONCLUSIONS

The multi-dimensional nonstationary stochastic process models in time
domain (AR and MA models) were proposed in this paper. These models can be
applicable to the identification and simulation problems of many engineering
systems. And the following conclusions can be made from the study.
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1). The multi-dimensional AR and MA models were led for the phenomena that
the nonstationarity changes gradually along time axis. Stationary model as
well as one dimensional model was induced easily from the above multi-
dimensional model as a special case.
2). The appropriateness of the multi~dimensicnal nonstationary AR model was
demonstrated by the simulation of the observed three dimensional earthquake
records. And despite of some defects observed in this study, it is totally
considered that the AR model proposed in this paper, Eq. 1 is reasonable.
3). Though a multi-dimensional nonstationary mixed AR-MA model was not
discussed in this paper, it is obvious that the mixed AR-MA model can be
given by the following equation.

L(3)

) i M(J) . i o .
(30 = X2 by Oabe (310 + 1) 7 g (e d)ay (3-k) + e (3)
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