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SUMMARY

The purpose of this paper is to present an analytical method on random
responses of nonlinear systems. The response process is described by Marcov
chain and the response problem is replaced by a threshold problem. The
nonlinear response is described by discrete states at which the response
is of linear behavior. And the response moves from one state to other
states with the transition probability that the response exceeds the
threshold value. The probabilities of displacement and maximum displacement
of a nonlinear system are obtained. The numerical results are compared with
empirical and analytical results, and the comparisons are generally
satisfactory.,

INTRODUCTION

In evaluation of structural safety during earthquakes, the stochastic
responses of a structure in the nonlinear range are required because the
earthquakes are random phenomena and the structure generally exhibits
nonlinear behavior. But analytical studies of random vibrations of
nonlinear systems are generally difficult, and empirical methods are useful
in obtaining the solutions of such problems.

The purpose of this paper is to present a theory of nonlinear random
vibration. In this theory the response process is considered as Marcov
chain and the problem is replaced by a threshold problem. The probability
densities of displacement and maximum displacement of the nonlinear system
are obtained, and the results are compared with empirical results.

METHOD OF ANALYSIS

It is assumed that the nonlinear response process is a discrete type
of Marcov chain. In this case the probability distribution of the response
is dependent on the transition probability and the initial distribution.
The probability that the response process of a single-degree-of-freedom
system is in the j-th state at time n is

P(y =3) = i P(y =] IYn_l=i)P(yn__1=1)
= Z -
1 %43

where P(yn=j|yn_l=i) is the conditional probability of yn=j assuming yn-l=i’

1 P(y,_¢=1) (1)

and ng is the transition probability of i to j. And the initial

distribution P(y0=j) is the one before the force excites and is described by
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Then the probability of response at time n is described by
-1

n
1T m
{P(y0=3)} mEO [ a5 ]

ey 1"

T n-1
=3 3
Py, =N} [af; ) (3)
m
where [ qj: ] is the transition probability matrix and T denotes the
transposition. And the probability of response during time n is given by
1

n
{2y, =3 3 0O<m<n)} = — (I {P(ym=j)} ) (4)
m=1

The probability of maximum response is as follows. The partial
matrixes are denoted by
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The probability that the response experienced at 0, 1,... k~th states
during time n is denoted by P (k), then P%(k) is the probability
distribution function of maximum response and is described by
n-1
§sl - < o = P =0 i m
P (0) P(ym’max_o ; 0<m=<n) (35=0) m=0[q0]
n T n-1 m
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Then the probability density function is given by
P (1) = P - PP(-1) 7
p™0) = "(0) '
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The displacement response of a hysteretic nonlinear system is denoted
by the states at which the response shows linear behaviors. The response
behaves linearly at each state and it moves to other states with the
probability that it crosses the threshold value. Then the transition
probability is estimated by the threshold probability of response. In this
paper the threshold probability is based on the probability of the linear
response process because the probability density of elastic-nonlinear
response is an approximately linear one that is bent at its yielding point.
Fig. 1 shows the concept of the stochastic model of the bilinear response.

The threshold value is estimated based on energy with the elastic
energy of a linear system equal. to the elastoplastic energy of a nonlinear
system. Fig. 2 shows the restoring force-displacement relation in which
displacement states are denoted by , @, @,..‘, and the interval between
displacement states by ay. The points A and B are determined so that the
elastic energies AOA A and AOB”B are equal to elastoplastic energies
000" a’a and OO b b as indicated below.

0o0"a”a = AOA A’ ) ) —

, /
0oy b = AOB'B | ; (1) state number
ay/2 py/2

Qy 0

[
0 _ Ay AYB b y

Fig. 2 Calculation of the Threshold Value
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Fig.l Stochastic Model of Bilinear Response
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And the points A and B are threshold values that the response moves from
the O-th state to the lst state and from the O-th state to the 2nd state.
Then the transition probability that the response moves from the O-th state
to the lst state is given by

9p; = P(A<y<B) (9

If it is assumed that the response is a stationary Gaussian narrow-band
process at each state, the threshold probability that the response crosses
the line y = A in unit time is given by the next equation from Rice's
theorem:

+ +
vA vA 1 AZ
P(y EA) = = + = - eXP(' 7 ) (10)
2f 2v 2 20
e 0 \4

where f, is the expected frequency, vX is the expected crossing number of
threshold value A in unit time and Oy is the variance of displacement.
The variance of stationary response is given by

2 > 2 .

o = ) |H(W) | S(w)dw (1)
v )

where S(w) is power spectral density of input waves and H(w) is harmonic
response function. Therefore, the transition probability qp; is described

by 2 2
1 A B

qpp = — [ exp(= 7~ ) - exp(- 5 ) ] (12)
2 Zoy ch

The assumption that the response is a stationary Gaussian process
gives a good approximation when the yielding point is high and the crossing
number of threshold value is a low one. But it gives an overestimation of
the transition probability when the yielding point is low. Therefore, the
number of states that the response can jump to in unit time is controlled
by the total energy and the maximum displacement in each state, and
hereinafter, this will be called jumping number. The jumping number is
decided so that the response dissipates the average energy in unit time
because the total energy transmitted to the system is almost constant and
is dependent on the mass and natural period of the system. However, this
gives a large displacement when the yielding force is low; the jumping
number is limited by the maximum displacement so that the response cannot
move.

The responses of a multi-degree-of-freedom system are determined by
the probability distribution of story displacements. They behave linealy
at their states and move other states with the probabilities that they
cross thier threshold values. The transition probabilities are estimated
by the threshold probabilities of linear systems and the interactions of
stories are estimated from thier jumping numbers that are determined from
thier yielding force distributions.

NUMERICAL EXAMPLES

As a check of the theory, comparisons were made with empirical and
analytical results as shown in the figures. The seismic excitations are
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the simulated waves of two types which are band limited white noise and
stationary waves. The power spectral density of a stationary wave is given

by 20 2
1+ 4h° =2
g 2
s (w) = g
X m2 2 wz (13)
(1= —— )% 4h?2 5
C\)g 8 w

g
and the values of wg and hg are 5m and 0.6. The root mean square values
of the two types of waves are the same and the duration times are also the
same at 15 sec. The structures are single-degree-of-freedom and three-
degree-of-freedom systems of shear frame type with bilinear hysteretic
force displacement relations. Thier natural periods both are 0.5 sec and
damping ratios are 0.05. In the figures the abscissae show displacement
and the coordinates probability demsity (p). The analytical results are
shown by e-—e(j=1l), o---0(j=2), and &--m (j=3) according to jumping number
(j). The empirical results are shown by solid lines and the mark A .

Fig. 3 and 4 show the comparisons for various yielding force (Qy/W)
systems of which the ratio of plastic to elastic stiffness (KZ/Kl) is zero.
Fig. 5 shows the comparisons for various ratios of plastic to elastic
stiffnesses. Fig. 6 shows the comparisons for various duration times. The
empirical results are for every 3 sec of responses. Fig. 7 shows the
comparisons for the three-degree-—of-freedom system. This system has a
yielding force distribution such that all stories yield simultaneously.
These comparisons of empirical and analytical results show generally good
agreement. Fig. 8 shows the comparisons between the response for a real
earthquake record and the analytical results which are expected when an
earthquake of the same statistical properties excites the system. The
record is the ElCentro 1940 NS component (Imperial Vallry Earthquake).

The earthquake wave has a nonstationary property, but in the analysis the
transition probability is estimated under—a-condition that the expected
value of linear response at each state is constant. The linear response
by the step-by-step method was used for this expected value. That is, it
is possible to evaluate the expected value of response when the system is
excited by a wave having the same properties.

CONCLUSION

The random response process of a nonlinear system is described by
Marcov chain and the response problem is replaced by a threshold value
problem. The nonlinear response is described by discrete displacement
states at which the response behaves linearly. And the transition
probability is estimated by the probability that the response exceeds the
threshold value. 1In this way the probabilities of displacement and maximum
displacement are obtained. The numerical results are compared with empirical
and analytical results, and the comparisons are generally satisfactory.
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Fig. 3 Comparisons of Displacements and Maximum Digplacements for
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