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SUMMARY

This paper aims at extending the concept of response spectra and
broadening their applications by investigating the relevant aspects of the
maximum response based on the random vibration theory. The asymtotical
distributions of both stationary and nonstationary maximum structural res-
ponses are established and compared with the results of computer simula-
tions. Applications of the statistical distributions in the development
of desd®n response spectra of building-equipment systems and in the dynam~
ic asnalysis of tall buildings are demonstrated.

INTRODUCTION

Building structures and equipments under earthquake excitations are
commonly analyzed and designed according to the deterministic response
spectra approach. While this approach is simple to follow, it has serious
limitations in its ability to account for the uncertainties associated
with various structural and earthquake parameters in the response predic-
tion. To overcome this difficulty, both the ground motion and structural
response have been modeled as stochastic processes, and treated as such
[1,21. - >

This paper establishes the relationship between the conventional res-—
ponse spectra analysis approach and the random vibration analysis approach,
thus permitting a statistical response prediction and rational interpreta-
tion. In the theory of nonstationary random vibration, the maximum struc-
tural response is a statistical variable, whose precise distribution
function, unfortunately, has not been obtained to date. In this paper,
first an asymptotic approximation is established for the distribution of
the maximum nonstationary response using extreme value theories. This
distribution is shown tc degenerate into the familiar function commonly
found in the literature when the excitation is modeled as a stationary
process [2-5]. These asymptotic distributions are then compared with the
average response spectra generated by computer simulations, and ‘the appli-
cations of the statistical approach in the establishment of design spectra
and dynamic analysis of buildings or building-equipment systems are also
demonstrated.

DISTRIBUTION OF MAXIMUM RESPONSE

Let y(t) be the respoﬂée of a linear structure to 'ea.rthquake ‘ground
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acceleration iig(t), and h(t) and H(w) be the impulse response function and

the frequency response function, respectively, of the structure. Note that
h(t) and H(w) constitute a Fourier transform pair. We further assume that
Stg(t)=w('b)5l(t) = g uniformly modulated nonstationary process [3-5] in which

%(t) is a stationary process with zero mean and a power spectral density
2(w) and ¢(t) is a deterministic modulating (or envelope) function.

Distribution of nonstationary maximum response

Let "1’“2’"3"‘ s be n absolute values of local peaks and troughs of
y(t) in the time interval [0,T]. The sequence {"j} constitutes a discrete

nonstationary point process referred to as the extreme '.point process'. The
distribution of these individual extreme values can be approximated by that
of the envelope process of y(t) as follows [6]

Fnj(u) = P[njiu] =1- exp(-u2/20§) (1)

in which °j=°y(t,j) = the standard deviation of y(t) at t=tj, 05(13)=

2.7 1Mt 0) | Po(w)aw, and M(t 0)=/y"n(x)p(t-t)exp(-tut)dr vhere [M(t,u)[%o(u)
= the evolutionary power spectral density of y(t). From Eq. 1 the mean
value and the mean square value of ny are: E‘[qj]=(1r/2)1/2<1‘j and E[n§]=2o§.

Now let Fn(u;T) be the distribution of the extreme values (peaks and
negative troughs) in [0,T], then

Fn(u;T) =1 - [Mu(T)/M(T)l (2)

in which Mu(T) = expected nunmber of extremes (peaks and negative troughs)

exceeding the level u in [0,T] and M(T) = expected number of all extremes
in [0,T]. When y(t) is stationary and ergodic, Fn(u;T) defined in Eq. 2

degenerates into the distribution of peak (or trough) values given by
Cramer and Leadbetter as Toe [7]. It is shown in Ref. 8 that Fn(u;T) can

be expressed by the Weibull distribution, e.g.,

a
Fn(u;T) =1 - exp[- %(% ] (3)

in which a and o depend on T as well as the nonstationary characteristics
of y(t) as will be determined later. Note that when y(t) is stationary, Eq.
3 reduces to the well-known Rayleigh's distribution with 0=2.0 and o=¢ (t)
= constant. ¥

Let y, be the absolute maximum of y(t) in [0,T]. Assuming that (i)
the extreme values nj(,j=l,2,...,n) are statistically independent and (ii)



the total number n of the extreme values in [0,%] is large, then the distri-
bution of ym approaches asymptotically to [9]

Fy (w) = Fﬁ(u;T)

exp{_exp[.xa-l(g.-m] (%)
m

/]

. : 1/a

in which K = (aln n) / (alnv‘l‘)l/z, and v is the expected zero crossing
rate of y(t) from below as well as from sbove. From Eq. 4, the mean value
and standard deviation of the absolute maximum Y, are, respectively,

- 1-

¥, = (K+0.57T12K o (5)
0. = 1.280/Ka_l (6)
ym

The Weibull parameters o and o appeared above can be determined from
the mean T and the coefficient of variation Vn of n using Eq. 3 as

v = [r(s- +1) -2+ 1)]1/%(%+ 1)

(1)

n= ml/ar(% +1)

n n
. . s . - =1 ___Jj;_
in which I'(-) is the gamma function, Vn-on/n, n=Z b E[nj] 7 bt JE

n n J=1 J=1
and 02= L z E[nz]-ﬁ2= 2 z oz—ﬁz. Therefore, it follows from above ex-
nonag J B ogmy J
pressions that a and o can be determined once Uj=°y(tj) is computed.

Distribution of stationary maximum response

It has often been assumed that strong shaking portion of typical earth-
quake accelerograms is stationary and so is the corresponding structural
response. In this case P(t)=1 and the distribution of the sbsolute maximum
reduces to the familiar expressions under stationary theory as follows:

F_(u) = exp{-exp[-x(—} - K)1} (8)

Im

and the mean value and standard deviation are

1

v, = (K+0.5T72 K "o (9)

o = 1.280/K (10)
ym

in which o'=ay(t) = constsut.



Monte Carlo simulation

The validity of the asymptotic distributions in Egs. 4 and 8 can be ex-
amined by comparison with the results of computer simulation. The power

R 2 ; 2 .
spectral density é(w)=€2[l+hkz(w/m )2]/{[1-(m/m )2] +h12(w/w )7} with w =
g g ) g =S g g
18.85 rad/sec., Ag=0.65 and S<=h.65x10—4m2/sec. has been used. The envel-

2
oped function used is !J)(t)=(t/tl)” for Oitf_tl, v(t)=1 for tl_<_'c_<_’(:2 and Y(t)=

exp[—C(t-tz)] for t>t, where tl=3 sec., t,=13 sec., and C=0.26.

2

Figure 1 shows a comparison for the zverage response spectra, ym,

among the simulation results (circles), the stationary theory (solid curve)
of Eg. 9, and the nonstationary theory {dashed curve) of Eq. 5 for differ-
ent damping values. A total of 2L sample functions have been simulated us-
ing the Fast Fourier transform technique (FFT') for each freguency and
damping value.

From these results it can be noted that the theoretical approximation
always predict higher average maximum response than the computer experi-
ments; therefore Egs. 4 and 8 give conservative results. This has been ex-
pected because of the assumption made in the theoretical approximations that
the local extreme values (peaks and troughs) are statistically independent.
As expected also, the nonstationary approximation (dashed curve) is more
accurate than the stationary approximation (solid curve). However, when
the frequency increases the discrepency between two approximations reduces
and the accuracy of the theoretical approximations improves. This again is
due to the reason that the number of half cycles n=vT in [0,T] needs to be
sufficiently large to develop the stationary response and to yield a justi-
fiable asympototic distribution.

It is alsc observed that the accuracy of the theoretical approxima-
tions improve with the damping coefficient of the structure. This again is
due to the assumption that the local extreme values are statistically inde-
pendent. It is well-known that the correlation among local extreme values
is stronger for smaller damping values. [6]. Furthermore, the coefficients
of variation of the response spectra using the theoretical approximaticns
correlate very well with those of the simulation results. The accuracy is
within 8%.

APPLICATIONS

Floor response spectra

The asymptotic distributions described above can be used to establish
the floor response spectra required for the design of wechaniczl and elec-
trical eguipments or other systems housed in a building [1]. Using a two
mass dynamic system representing the building-equipemnt assembly. the dis-
tribution of the floor response spectra can be obtained aralytically using
the stationary approximation as the input at the building base. To facili-~
tate the comparison, the following values are used in the calculations:
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dampings of building and oscillator = 5%, Sd=0.07 f‘tz/sec2 (which results
in an average maximum ground acceleration of 0.28g). Furthermore, the na-
tural frequency of the building is restricted tc be greater than 0.5 hz.

The average floor response spectra based on the stationary approximation is
plotted in Fig. 2 as a dashed curve along with the floor response spectra
suggested in [1] (solid curve). It is noticed that the trend of both spec-
tra is similar but the theoretical approximation (dashed curve)} is more con-
servative. This is due to the fact that the natural frequency of the
building is tuned to be identical to the oscillator in the calculztion in
order to produce the maximum response. Suchk a ronservatism is reasonable
when the information of the building characteristic is not available or
when the equipments have to be installed in a variety of different buildings
in various cities.

Maximum response of building

The response of an 8-story building under earthquake ground excita-
tions presented in [10] is considered. The mass center and the elastic
center of the building are not coincident such that the building exhibits
coupled lateral-torsional motions. The first three coupled natural frequen-
cies are 0.866 hz (in x-direction), 1.038 hz (in y-direction) and 1.31 hz
(torsion), respectively. The damping coefficient associated with the first
mode is approximately 2%. The analysis is focused upon the excitztior 'n
the x-direction only.

Under stationary assumption, i.e., P(t)=1.0 for all t, the standard
deviations of the base shear force (in x-direction) and the torsicnal mo-
ment are 1106 KN and 7516 XN-m, respectively. The nonstaticnary standard
deviations are given in [10]. The distribution of the maximun response,
normalized by the corresponding stationary standard deviation, based on the
stationary approximation (curve 1), nonstationary approximaticn {curve Z),
and Monte Carlo simulations (circles) are presented in Figs. 3(a) and 3(b).
In nonstationary approximation the result using 25 sec. duraticn aof the
response process is plotted as Curve 3, while that based on 10 sec. dura-
tion is shown by Curve 2. Since the difference between Curves 2 and 2 is
insignificant [Fig. 3(a)], Curve 3 is not shown in Figs. 3(t)-3{d). Wuhen
the damping coefficient is increased to 6%, the correspcuding distribusicns
are plotted in Fig. 3(c) and 3(d) in which the stationary standard de
tions of the based shear force and torsicnal moment are 702.8 KN and L27
KN-m, respectively. :

3.5

It is observed from Fig. 3 that the nonstationary approach generally
provides more accurate results than the stationary approach and that the
accuracy of the asymptotic approximations improves as the damping vaiue in-
creases. It is interesting to note that the agreement between the theore-
tical and simulation results is very gcod at the upper tail poertion of the
distribution (probability greater than 957). This is evident because th:
events of exceeding a high level respounse tend to be statistically indepen-
dent, being consistent with the assumption of the theoretiral approvinm-
tion.
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CONCLUSION

The above analytical and computational analyses indicate that the

asymptotic distributions in general provide good and slightly conservative
estimates of the statistical response spectra, particularly when the damp-

ing
mati

or the frequency of the structure is high. The nonstationary approxi-
on usually yields reasonable results, even when the damping or the

frequency is low.

the

The procedure suggested can be a very useful and complementary tool to
conventional analysis method, and can provide a great deal of insight

into the variability aspects of the earthquake response due to the inherent
uncertainties in the problem. The investigation of tall building maximum
response distribution and the determination of average design floor response
spectra presented herein are merely two simple examples of the potential
engineering applications of the statistical response approach.
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