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I. SYNOPSIS

The optimality criteria method based on the energy distribution of the
structural members is presented for five design conditions with multicom-
ponent inputs of static loads and seismic excitations. Four 15-story frame-
works of unbraced, single-, double-, and K-braced systems are designed using
ODSEWS program for coupling ground motions of the E1 Centro, 1940 earth-
quake. The paper includes various design results among them the significant
observation is that, for the same constraints, the K-braced system requires
much less structural weight tham other systems.

"II. INTRODUCTION

. In the past decade, a considerable amount of literature has been pub-
lished in the area of optimum structural design. The increasing number of
publications correspond closely to the rapid demand for economical and re-
liable structural design mainly in aircraft engineering.4 The conventional
design is based on the trial and error process and is recognized that this
is an inadequate method, which yields solutions that cannot always satisfy
safety and performance constraints and provide the lowest possible structu-
ral cost. The current computer applications in seismic structures is based
on the conventional design and must have a preliminary assumption of mem-
ber stiffnesses. If the initial stiffnesses are misjudged, repeated analy-
sis, regardless of the program's sophistication, will not yield an improved
design. The paper presents a powerful optimization technique of which the
significant advantage is that the number of iterations required to converge
on an optimum (or pseudo-optimum) design is largely independent of the num-
ber of variables in the problem. The structural formulation is based on
the consistent mass method with the P-A effect! of the vertical gravity
Toad and ground motions. Five versatile behavior constraints and various
numerical examples are shown and discussed.

III. OPTIMALITY CRITERIA FOR MINIMUM WEIGHT DESIGN

The optimality criteria for five general design conditions are briefly
presented. The objective is to minimize the weight of the structure with
fixed configuration while satisfying the desired constraints under specific
loading conditions. The total structure is discretized into m finite ele-
ments for which the total structural weight, W(x), may be expressed as -

m
WOx) = L pinyXids - | o m

where p; is the mass density, nj.is the ratio ®f the cross-sectional area,
Aj, to the moment of inertia, xi, and the product nijxj%; represents the vol-
ume of the element, i. For a structure subjected to bo%h static loads and
multicomponent ground motions, the equation of motion can be expressed as
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in which My = nonstructural mass resulting from the superimpoged weight,
Ms = structural mass,,C = vig;ous damping, §§_= structural st1ffness, Kg =
geometric stiffness, r{x,t),*(x,t),¥(x,t) = acceleration, velocity, and
displacement vectors of system coordinates measured from the equil}brium
position after deformation caused by static loads, r(x) = static displace-
ment vector, ¥g(t) = vector of ground accelerations, and R = vector of sta-

tic loads.

If the behavior constraints are denoted by y(x), then a new function
can be written as

1111

where X5 is the undetermined Lagrangian multiplier for jth constraint. By
using the necessary condition of Kuhn-Tucker to characterize any local
minimum,

m n
Y(xs2) = ] poniX.f. + ) A.yj(x) (3)
i=] =1 9

n 3y {(x)
W (x,1) _ j -
) = pomafs F Y As ,1=1,2,3, ...m (4)
aX T - 55 J9xy
After simplifying Eq. 4 the optimality criteria can be expressed as
n
jzl Xjeji =, i=1,3,2, :..m (5)

where ejj can be interpreted as an energy density function in the following
form

e.. = Byj(x) / 3W(x) (6)
Ji axi X4

The energy density function is derived on the basis of the following indi-
vidual design conditions (behavior constraints). In the design, the con-
straints can be considered separately as well as in combination.

1. Fléexibility Constraints for Static Loads. The flexibility constraints
of a system result from the displacement limitations of either certain nodes
or all the nodes. The displacement constraint function may be expressed by
using the following virtual work at any nodal point:

y;(x) = TF(), (7)

in which 65 = load vectgr with unit value at the jth direction and zero
values for others, and r(x% = vector of generalized displacements attribu-
table to the static load, Rs Substituting Eqs. 1 and 7 into 5 and 6 and
then simply considering a single displacement constrain in the jth
direction,

=T T > v 2T T >

d;(x) 3 Kg5 a3 Fx) - Py a;(x) 33 Kgi 24 r(x) .

i PiniXiYy Ty ®

in which P; consists of half the structural mass of member i (njp;2i/2) that
must have 1he influence on the geometric stiffness matrix estab%ished on the
basis of column members. a; is the compatibility matrix connecting the gen-
eralized coordinates of a sStructure and those of the constituent members.
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2. Stiffness Constraints for Static Loads. The stiffness constraints are
used to measure the Timitations of the allowable shear stress and the allow-
able combined stress of axial and bending. The stiffness of the structure
can be described by the work cgused by the static load, R, multipliied by
the generalized displacement, ¥(x), in the form of

y(x) = 5 RF(x), (9)

because the product, ﬁT?(x), is an inverse measure of the stiffness. Thus,
y(x) may be called a measuring function of static stiffness. The optimality
criteria of Egs. 5 and 6 for a single loading condition, j, can be expressed
as

> T > > T >
r(x) ii K&i ii.r(x)-Pir(x)-Ei-Eﬂi.i;.r(x)
PiM{Xi44 j

(10)

N~
n
>)|——-

eji =

3. Flexibility Constraints for Dynamic Loads. The dynamic displacement
constraint function can be expressed in a form similar to Eq. 7 in terms of
virtual work as follows:

y;(x.t) = TF(x.t), an)
where 53 = load vector with unit force and unit time function at the jth
direction only, and ¥(x,t) = vector of generalized displacements attribu-
table to the dynamic load, R(t). For a single displacement constraint at
Jjth direction, Egs. 5 and 6 yield

-1 Ty T > pr 2T T >
51 = T X [qj(x,t)ai Kg; as T(xst)-P; qj(x,t)ii Kys 25 T(xt)
] — ——— -_1—-——
2 5T T >
-p qi(xat)i Msi il r(x,t)] pinixili (12)

in which p is the vibrating frequency approximately obtained by using the
nodal displacements, r(x,t), in the Rayleigh quotient (see Eq. 15), and
qj(x,t) is the displacement vector resulting from the application of 5

4, Stiffness Constraints for Dynamic Loads. The measuring function of
dynamic stiffness may be established in a manner similar to that of Eq. 9
as follows:

yit) =G & F(x,t), (13)

in which ﬁb represents the magnitude of the dynamic load vector. For a
single loading condition, Jj,

o1 T T > >T T >
e = - —271;[r (x,t)a_i_Kii_a_i r(x,t)+r (x,t)iifgi_a_i r(x,t)

-p2 ?T(x,t)a$ Msi a. ?(x,t);/bikinizi (14)

St

5. Natural Frequency Constraints. The natural frequency of any mode, w.,
of a structure can be obtained by using the Rayleigh quotient expressed In
modal displacements

T
m?=M (15)
I 3Tws,

="
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in which wz‘represents the constraint function y(x,t), K = Ks - Kg, and
M = Mg + My. Substituting Eqs. 1 and 15 into Eq. 6, then the optimality:
critéria Tor. jth mode became

T T > o 2T T 22T Ty 4 2.
Hakindhihs s ataad 6
e.. = - =
3 , PiN§X5 44 Aj

The energy density functions, ejis derived above reveal that the optimum
design is obtained when the ratio of the strain energy (static cases) or
the strain energy combined with kinetic energy (dynamic cases) to the mass
density is the same for all._members.2-3 If there is more than one active
constraint in any of the five cases, then Eq. 5 must be satisfied.

IV. RECURSION RELATIONSHIP AND NUMERICAL PROCEDURES

The recursion relationship provides a means of numerical procedures to
resize structural members on the basis of the optimality criteria. Let 1] =
W(x)/(Ax5)s> Xi = Aaj, and e} = Aejj, then Eq. 5 can be arranged as

n
1
jz] N

Aoei=ot.i "‘—"?.:""_ ’.i=]s 29 «ees M (]7)

in which a4 = relative design variables corresponding to x;j and A = scaling
factor. Equation 17 suggests the following recursion relation for deter-
mining the design variable in each cycle:
n 1/2
1]

jz‘ Rk i=1, 2 (18

(Aag) gy = (25), T »i=1,2, ..., m )
v

where the subscripts v and v+l denote the cycles of iteration.

The numerical procedures for the recursions may be briefly explained
as follows: 1) the structure is analyzed with initial relative design
vector consisting of equal sizes for all members, 2) the constraint sur-
face is located by scaling the design to satisfy the specified frequencies,
stresses, and displacements resulting from static Toads, dynamic forces, or
combined loadings, 3) the weight of the feasible design is determined,

4) the active constraints are identified and then the structure is resized
according to the iterative algorithm shown in Eq. 18, 5) steps 1 through 4
are repeated (except the areas used in step 1 are based on the results from
the previous cycle) as long as the design improves.

The bracings are bar elements and beams and beam-columns are built-up
sections as shown in Fig. 1 for which the moment of inertia, Ig, is con-
sidered.as a primary design variable, and the depth, d, flange thickness,
tf, and web thickness, ty, are the secondary design variables. The cross-
sectional area, Ay, and the shear flow, V,, are expressed in terms of the
secondary design variables. The upper and lower bounds of the cross-
secticn can be specified and the ratios of the minimum moment of inertia
to the maximum moment of inertia of both girders and columns can be imposed.
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V. NUMERICAL RESULTS AND CONCLUSIONS

1. Numerical Results. The 15-story buildings shown in Figs. 2-5 are de-
signed for Models I and II of the accompanying figures. The span length is
21 ft (6.40 m), the floor height, 12 ft (3.66 m), the dead load on each
floor as nonstructural mass, w, 180 1bs/in. (178.74 N/m), the modulus of
elasticity, E, 29,000 ksi (200.1 GN/m?), and the mass density of the con-
struction material p = 0.283 1bs/in3 (783.34 kg/m3). The dynamic excita-
tion is due to the horizontal and vertical earthquake accelograms of El
Centro, 1940 for which the acceleration spectra with 5% damping are given
in Fig. 6. The allowable stress for bending combined with the axial force
js assumed to be o < 29 ksi (200.1 MN/mé) and the allowable shear stress,
oy, should be Tess Than or equal to 0.65 o. Although different allowable
deflections may be imposed at any particular nodes, the allowable deflec-
tion considered herein is based on the general code provision, i.e., the
relative displacement between floors is iimited to 0.005 times the story
height. Other constraints are b = 12 in. (30.48 cm), dgax = 75 in. {1390.50
cm), dpin = 8 in. (20.32 cm), (tf/d)gay = 0.045, (tf/d)min = 0.023, and
tw/d = 0.02.

Four cases of the final design results for Fig. 2 are shown in Figs. 7
and 8 in which Case (a), H, signifies the design resulting from the hori-
zontal ground motion only, Case (b), H+P-A(DL), is due to the horizontal
ground motion plus the P-A effect of static load of nonstructural mas act-
ing on girders, Case (c¢) of H+V indicates the horizontal and vertical earth-
quake components, and Case (d) represented by H+V+P-A(DL+V) corresponds to
the design obtained by considering horizontal and vertical earthquake com-
ponents as well as the P-A effect of the vertical inertia forces associated
structural and nonstructural masses. The final design results of the mo-
ments of inertia and the cross-sectional areas for Models I and II of Fig.

3 are shown in Figs. 9, 10, and 11 for all the four leading cases. The de-

sign-result comparisons corresponding to Case (d) of Model II for the braced
frames are shown in Figs. 12 through 17. The final results of the structu-

ral weight, natural periods and the displacements at top floor are given in

Table 1. The observations of the results are included in the conclusions.

2. Conclusions. (1) The optimality criteria method :is presented for five
versatile design conditions of braced and unbraced frames with multicompo-
nent inputs of static loads and seismic excitations. (2) The inclusion of
the vertical seismic component and the P-A effect in Model II yieids the
heaviest design among all the four cases. (3) the moments of inzrtia of
columns of all the structures are the largest at the base and then become
gradually smaller from the bottom to the top floor. However, the moment of
inertia of the first floor girder of the unbraced frame is smaller than
those of the next three upper floors and those of the sixth through eleventh
floor are almost the same. The moments of inertia of girders of double-and
K-braced systems are governed by the lower bound constraints. (4) The K-
system demands the lightest structural design and seems to be the most fav-
orable system among these four. (5) The designs are controlled by the com-
bined stress of axial and bending of the columns at the support. All other
members are not fully stressed. The displacements of the K- and double-
braced systems are similar but larger than those of the single-braced frame.
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TABLE 1. FINAL WEIGHTS, NATURAL PERIODS, AND DISPLACEMENTS AT TOP FLOOR L ]
(A=Unbraced, B=Single-Braced, (= -1 - 100
{Mioraced, s ??..-z.sicm; fouble-Braced, DeK-Braced) },
- T5.
Final Natural Period (sec.) gtsgpv'
Weignt Floor
Groyg Cade kips. 1 2 3 q 5 in.) ° LY
a B . o o . o L4 1 o
b 62.21 2.179 0.671 0.38 0.268 0.202 10:5
c 60.77 2,158 0.692 0.402 0.281 0.217 !D‘Eg
d 62.21 2.152 0.677 0.355 0.276 0.212 10.80
8 2 48.32 .1.879  0.4% 0.256 0.247 0.187 9.00
b 47.69 1.876 0.479 0.274 0.252 0.209 9.05 ¥
< 48.76 1.874 0.468 0.291 0.255 0.224 9.02 )
d 50.00 1.874 0.485 0.288 0.253 0.221 9.02
v d 31.55 2,134 0.509 0.398 0.361 0.335 10.80 r
o b 2861 2111 0.59 0.224 0.269 0.178  10.85 q
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