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SUMMARY

A new statistical amalysis technique is presented for estimating the
peak response of a linear single-degree-of-freedom system subjected to a
transient random excitation. The technique may be used in a forward sense -
to predict the peak response of a simple structural system subjected to an
earthquake-like transient random process. It may also be used in a back~
ward sense to define an ensemble of earthquake-like tramsient random
processes which correspond to given peak response data. The technique
thereby provides a consistent and statistically sound framework for
generating "artificial" records from given design response spectra.

INTRODUCTION

One of the most important and widely discussed problems in earthquake
resistant design is the determination of the maximum response of a struc-
ture subjected to an earthquake excitation. If the structure is linear
and the earthquake time history is known, the problem is straightforward
and can be handled by a variety of analytical and numerical techniques.
For very simple systems, the desired result is often graphed in the form
‘'of a response spectrum.

The analysis problem is greatly simplified when the earthquake is
taken to be a known deterministic function of time. However, it has
become more and more common to consider earthquakes to be nondeterministic
stochastic functions of time. The problem of determining the peak response
of randomly excited linear structures is much more formidable. Although
considerable progress has been made in this area, there is still a need for
accurate and simple solution techniques which relate the statistics of the
peak response of the system to a probabilistic description of the excita-
tion and vice versa.

Consider the simple structural model represented by the single-
degree-of~freedom equation of motion

% + 2[wox + wo?x = 6(t)n(t) @)

where { is the fraction of critical damping of the structure or mode, wg is
the undamped natural frequency, n(t) is a random noise process with spec-
tral demsity Sy and 0(t) is a modulating function of time. First, consider
the case where n(t) is a white noise and 8(t) is equal to unity for all
time.
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The probability W(T) that the magnitude of the response x remains less
than some value b throughout a time interval [0,T] will obviously be depen-
dent upon the initial conditions imposed on Eq. 1. However, it has been
observed that the effects of the initial conditions tend to die out as T
becomes large compared to the natural period of the oscillator [1]. Spe-
cifically, it has been observed that W(T) approaches a decaying exponential
of the form

wry ~ & )

regardless of the initial conditions [2]. The parameter 0 is referred to
as the limiting decay rate of the first crossing density.

Numerous approximate solutions have been proposed for o and thereby
W(T). Of these, the most accurate schemes generally involve the generation
of an approximate solution for the conditional transition probability den-
sity governing first passage. Such approaches are, however, quite involved
numerically and therefore rather costly.

For sufficiently small damping, the sample functions of x(t) have an
approximately sinuosidal appearance. Hence, the magnitudes of the peaks of

* these quasi-harmonic sample functions may be treated as a one~dimensional
continuous-state, discrete time Markov process. Mark [3] has suggested the
approximation that the peaks are separated by intervals of exactly one half
the structural natural period. A conditional transition probability den-
sity for the magnitude of a peak given the value of the preceding peak is
then derived. This leads to an integral equation which must be solved
numerically. This approach requires substantial numerical computation but
is somewhat more efficient than Monte Carlo simulation or diffusion of
probability methods.

A number of simpler approximate solutions for the limiting decay rate
also exists. These require much less effort to implement but are generally
less accurate. Of these, the simplest involves the assumption that the
level crossings are statistically independent events. This will be appro-
ximately true when the value of b is large compared with the root mean
square value of the response 0 so that the average interval between suc-
cessive up-crossings of b becomes very long., Making this assumption, the
times at which up-crossings occur constitutes a Poisson process, and the
intervals between up-crossings will be exponentially distributed. The
rate of down-crossings will be the same as the rate of up-crossings. Thus,
the resulting approximation for o will be a function of the structural
natural frequency, the root mean square value of the response and the
level b.

For barrier levels of practical interest, the Poisson approximation is
usually overly conservative. For very high barrier levels, however, the
approximation becomes quite good and is in fact asymptotic to the limiting
decay rate as b +» » [4].

Corotis, Vanmarcke and Cornell [5] have proposed a scheme to obtain
improved approximations to o from the average frequency of up-crossings of
the level b. The stationary envelope response process a(t) is treated as
a two-state, continuous time, Markov process in which the state 0 corre-'
sponds to a < b, and state 1 corresponds to a > b. The intervals of time
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spent in states 0 and 1, respectively, are assumed to be independent ran-
dom variables with exponential distributions. Employing a physical argu-
ment to estimate the fraction of envelope crossings that are immediately
followed by a level crossing leads to an approximation for o which is a
fanction not only of the natural frequency of the structure but also its
damping. This approximation is more-accurate than the Poisson process
approximation and predicts the correct qualitative behavior of o with
variations in crossing level b. - However, it is possible to obtain a fur-
ther improvement in accuracy with little additional computational effort
as indicated below.

A NEW APPROACH TO THE FIRST PASSAGE PROBLEM

It is widely agreed that the basic reason the Poisson process approxi-—
mation for o breaks down for low barrier levels is that the crossings of
the barrier level are, in effect, not statistically independent events.
Since the envelope varies slowly, when a peak occurs above the threshold
level the probability is higher than usual that the next peak will also be
above the threshold. Thus, level crossings tend to occur together in
clumps. If allowance were made for the clumping tendency, one would expect
a more accurate estimate for o to result,

Let the clump duration T; be defined as the number of successive peaks
that occur outside the level b with no intervening peak inside this level
divided by twice the natural frequency of the structure in Hz. Then,
assuming that the response process is ergodic, that the time between
clumps has an exponential distribution, and that the clump size and the
time between the beginning of successive clumps are independent, it may be
shown that the limiting decay rate o is inversely proportional to the
expected value of the clump duration E[T;]. Hence, the problem of deter-
mining the limiting decay rate is reduced to the determination of E[T;].

Let P(n-+l|n) be the conditional probability that a clump which al-
ready contains n level crossings will continue for at least one more cros-
sing. Then, P(n+1]n) will increase rapidly with n for n small. However,
as n becomes large, P(n4—1[n) will approach a limiting value P*, It is
assumed that the probability that T); is greater than some value s is of the
form of a negative exponential in s multiplied by s. Then, it may be
shown that [6] -

b2\ |t .
o = \)b 1 - exp <—*2€2—> 1n (1/P%) 3

where Vv, is the well-known Poisson up-crossing rate of the level b, P* is
estimatéd by considering the response of the system for one-half cycle of
oscillation after a peak greater than b has occurred.

Suppose the oscillator is at a peak during a clump in which k level
crossings have already occurred and let py(r) be the conditional probabi-
lity density of such peaks, given that r 2 b. Due to the narrow-bandedness
of the response, it will be assumed that any two successive peaks will be
separated by an interval of ﬂ/wd, and that x changes sign during this in-
terval. With this assumption, Pkﬁ1<r) may be expressed as a convolution
of pp(r) and the conditional probability q(x1 |x24T/wg)dx, that a response

675



trajectory which starts at x; reaches the differential element of a measure
dxs centered at xz at a time ﬂ/md later. As k - o, pk(r) approaches a
stationary density which is assumed to be of the form of a clipped Gaussian
distribution. This yields

2 Wo
_xr b -r exp (— —~‘)
P = jm eXP( 205> ' Yq

ov2m erfc(/;o) erfe 5o [l - exp (_ %3_)]%

The integral of Eq. 4 is approximated analytically by assuming a tri-
linear representation of the complementary error function which matches the
function exactly at its two asymptotes and at the point where the argument
is equal to 0. The results of the present approach are less conservative
than either the Poisson approximation or Corotis, Vanmarcke and Cormell's
estimate for 0. and correspond well with the simulation results.

dr 4)

ESTIMATION OF RESPONSE SPECTRA

Using the results for stationary response, the nonstationary response
problem may be treated approximately by applying the approach proposed by
Corotis, et al. [5]. The Fourier transform of the autocorrelation of the
excitation will be 82(t)S, which may be though of as a time dependent
intensity or "spectral demsity." It is assumed that the probability den-
sity of the response is a slowly varying function of t so that it may be
approximated by a stationary density over one period of the system. Then
it is assumed that the first level crossing during a period of the system
will occur with approximately the same frequency as if the response were
truly statiomary. Making these assumptions, an expression for the instan-
taneous first crossing rate o (t) may be derived in a fashion entirely
analogous to the derivation of the limiting decay rate given by Eq. 3,

The form will be identical except for the functional dependence of each
term on t. Vy(t) may be evaluated in a straightforward manner using the
quasi-stationary assumption. The procedure to obtain P*(t) is similar to
that followed to determine the corresponding quantity P* for the stationary
case except that the excitation intensity is now 62(t)So which changes the
form of Eq. 4 somewhat. With v, (t) and P*(t) specified, the first passage
probability is given by

t
W(t) = exp | - ] o(s)ds 5
0

Let [xm(wo,C)[ represent the maximum displacement of the structure due
to the earthquake~like excitation 8(t)n(t). Then, [xm(wo,c)l must occur
during a time interval T equal to the duration of the excitation plus one
half period of the structure. For a given sample function of the excita-
tion, ]xm(wo,c)l would be a deterministic function. However, since the
excitation is assumed to be a stochastic process, Ixm(wo,c)l will be a
random variable. The response spectrum therefore takes on a probabilistic
form. Let the confidence limit P, be defined as the probability that
Ixm(wo,C)l does not exceed some value SD(wo,E,PS). Then, the response

676



spectrum displacement SD(wg,C,Ps) may be defined probabilistically by the
relationships

SD(wO ,CsPS) = b (6)

and
W(t) = Pg )]

APPLICATION TO THE EARTHQUAKE RESPONSE PROBLEM

The previous analysis may be employed in a number of different ways.
If the excitation parameters 6(t) and n(t), the structural parameters W
and 7, and the confidence limit Py are given, Eqs. 3-5 may be used to
determine the probabilistic spectral displacement SD. If the structural
parameters are varied, a result analogous to the usual earthquake response
spectrum graph may be obtained. This is the forward problem.

The problem may also be cast in a backward sense. That is, given the
structural parameters, the confidence limit and the spectral displacement,
find a class of stochastic excitations which will generate this peak
response. This form of the problem can be useful in generating ensembles
of time histories which correspond to a given probabilistically defined
response spectrum.

In order to define the stochastic excitation process, it will herein
be assumed that 6(t) is a known smooth function of t. In particular, it is

assumed that [7]

o(t) 8o H tsn

€))]
(t) = 8¢ exp [-0;(t-t;)] t 2t

where 69, 0;, and t; are parameters to be defined later. It is further
assumed that n(t) is a gray noise with smoothly varying spectral density

S(w).

If the structural system is lightly damped, the covariance matrix of
the response may be approximated as [8]

(=

Qt) = SWo) [ Flw,t) P (w,t)dw ©)

-00

where F is the deterministic 2n-space solution of the response of the
structure to a modulated harmonic excitation. The components of the co-
variance matrix Q may then be used to solve for v, and subsequently W(t).
The backward problem may be solved by finding the value of S(wp) which
gives W(t) = Py according to Eq. 6. This may be accomplished numerically
with no difficulty. If the procedure is repeated for different values of
wg, the spectral density of the process n(t) is generated.
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EXAMPLE OF APPLICATION

As an example of the application of the present approach, consider the
problem of determining a class of nonstationary random processes which
correspond to the response spectra specified by the United States Nuclear
Regulatory Commission Guide 1.60 [9]. The 2% and 5% damped spectra for a
nominal lg peak acceleration will be modeled. It will be assumed that the
confidence limit for these spectra is P = 84.2%. The emvelope 6(t) will
be specified by the parameters 6y = 1, 81 = 0.0992/sec and t; = 15 sec.
Then, except for the absence of an initial buildup and final decay regionm,
these parameters correspond to the Caltech B-type earthquake envelope [7].

The target response spectra are shown in Fig. 1. Application of the
technique herein described to the two spectra yields random processes with
the power spectral densities also shown in Fig. 1. It is seen that the
different response spectra correspond to different power spectra. Hence,
within the context of the present analytical framework, the different
response spectra of the Regulatory Guide can not be associated with a.
single probabilistically defined excitation process. However, the dif-
ferences between the two power spectra for 2% and 5% damping is less than
20% for the frequency range of 0.2-10.0 Hz.

Sample functions were generated for the processes indicated by a
superposition of harmonic functions with prescribed amplitudes and ran-
domly distributed phases. Two representative sample functions are shown
in Fig. 2. These time histories were generated by a superposition of 99
harmonic components. It is seen that the sample function time histories
exhibit many of the features of real earthquakes.

An ensemble of 200 sample functions of the type shown in Fig. 2 was
generated for each spectrum and used as the input for a simulation study
of the peak response of a damped single-degree-of-freedom system. The
results for the 84.2% level of exceedance are shown as data points in Fig.
1. TIt is observed that the simulation results lie very close to the tar-
get spectra over the range of 0.3 to 12 Hz. The agreement appears to be
as good as that attainable by any other technique [10].

Based on the results of this numerical example, it is concluded that
the present analytical model is capable of accurately predicting the peak
response of single-degree-of-freedom systems subjected to nonstationary,
non-white random excitation. This provides a relatively simple basis for
relating earthquake time histories and response spectra in either a for-
ward or backward sense. It is hoped that this new analytic approach will
prove useful in the study of the response of structures to earthquake and
other types of transient random excitation.
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