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SUMMARY

The stationary random response of a single-degree-of-freedom system
having 'general slip" hysteresis, which lies between "bilinear'" hysteresis
and "pure slip" hysteresis, when subjected to the Gaussian white excitation,
is presented. The approximate solution to an oscillator with the Coulomb
damper is initially derived. The correspondence of this Coulomb damping
characteristic to the general slip hysteresis is clarified to estimate the
random response of such a hysteretic system. Important expressions thus ob-
tained are examined by the digital simulation. Analytical solutions agree
with simulation estimates with sufficient accuracy except some special cases.

INTRODUCTION

It is difficult to deal with the nonlinear response of a hysteretic
oscillator through the random vibration theory in an analytical way. In the
field of the earthquake engineering, however, this is the quite important
problem earnestly desired to solve. This paper has been prepared as one of
the trials to clear up this hard problem to some extent. To be concrete,
this aims at deriving approximately the analytical expressions of the
stationary random response of a single-degree-of-freedom system having the
"general slip" hysteresis, when subjected to the white noise. The general
slip hysteresis defined herein covers the well-known bilinear hysteresis as
well as the "pure slip" hysteresis. In this sense, this is regarded as the
quite general character of building structures.

APPROXIMATE SOLUTION TO THE COULOMB DAMPING SYSTEM

Consider a single-degree-of-freedom system represented by the following
second order ordinary differential equation.

%+ f(x, x) = W(t) , (@H)]

where x is a displacement, - designates derivative with respect to time, t,
and f(x, %) represents a restoring force function. The excitation W(t) is
prescribed as a Gaussian white noise having zero mean with a constant
spectral density, K. Supposed that the study is limited to the random
process where both the input and the output are stationary, the joint proba-
bility density function of x and %, p(x, %), satisfies the following Fokker-
Planck equation.

.9 3 . 32
% 3% -3z [p+« £(x, ®¥)] - 1K 5;% =0 . (2)

If the restoring force function, f, is given, in particular, by

+3) 8, ©)

£(x, %) = c sgn(X) + (2_;'16 %
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where ¢ is a positive constant, sgn denotes a sign function and g(x) is an
arbitrary function of x, then the function p which satisfies Eq.(2) becomes!)

x
p(x, X) = A exp[— _-rrc—K {x] + ~2—1—$—§ Xo g(u)du}] ;s A = const. (4)

r
If the random variable |%| can be replaced by i.s expected value EL'*Q
as its representative, the right hand side of Eq.(3) is considerably simpli-
fied. Now, since this expected value is estimated from Eq.(4) as

e(|x(] = m&/e , 6
Eq.(3) can be reduced, in an approximate sense, into
f(x, x) = c sgn(x) + g(x) . (6)

In other words, the solution to Eq.(2) is approximately written as Eq.(4),
if f is represented by Eq.(6). Moreover, if g(x) is given by

g(x) = bx + d sgn(x) , (7

where b and d are constants, then Eq.(6) represents a "Coulomb-set up" char~
acteristic which_can be modelled by the combination of a Coulomb damper with
a set up spring?’ as shown in Fig.l. Particularly when d=0, f becomes a
"Coulomb-linear" characteristic which can be modelled by the combination of
a Coulomb damper with a linear spring.

When g is given by Eq.(7), Eq.(4) becomes concretely

o _ 1 . exp(-e?) . VZ k| _ x2 + 28]x
p(x, %) = 2/T0519¢  erfe(e) exp(- cO% 2 1042 ) @

where 0% = v2nK/c, 19x = (7K/c)¥2/b, & = d/b, € = 8/(10x/2), and

2 u _¢2
erfe(u) = 1 - 7= Soe dt .

cOx and 104 stand for the root mean square (R.M.S.) value of % and x, re-
spectively, where suffixes ¢ and 1 denote the Coulomb-set up and Coulomb-
linear system, respectively. R.M.S. value of x, ¢0x, is obtained from Eq.
(8) as

_ 2e | e:_cp(-ez) 2
cOx = lox\/ -7 erfc(e) + 2¢- . (9)

APPROXIMATE SOLUTION TO THE GENERAL SLIP HYSTERETIC SYSTEM

"General slip hysteresis' means a "stair-shape" character, as illus-
trated in Fig.2, which is obtained by sliding mutually two bilinear loops
along the straight line which passes the origin. To prescribe this property,
four parameters — the natural circular frequency in a small amplitude, w,
the ratio of a plastic stiffness to an elaqpic one, Y, the higher yield
acceleration, a, and the ratio of the lower yield acceleration to the higher
one, Vv — are required. The nondimensional quantity, v, lies between O and 1.
The case of v=0 corresponds to "pure slip hysteresis' where the loop returns
to the origin at every half cycle, while the case of v=1l to the conventional
bilinear hysteresis. vy ranges 0Sy<l. It will be observed from the compari-
son of Fig.l with Fig.2, that this general slip hysteresis is quite similar
to the Coulomb-set up characteristic with certain mutual correspondence. If
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this relation is detected in an analytical form, the one can be favorably
estimated from the other. This will be achieved as follows.

When three parameters in the Coulomb-damping system are selected as
b =vyw?, ¢ = (I+v)(1-y)a/2, and d = (1-v) (1-y)a/2, (10)

then both characteristics are laid upon each other in most parts. Under
these conditions, it is expected that areas surrounded by hysteresis loops
are adjusted to be equal to each other approximately. This energy balance
is expressed in a form of expectation as

H gX] = E[X] + 4, (11)
where A is a yield displacement, X is a random variable which stands for a
peak displacement and a suffix g designates the general slip characteristic.

Supposed that the grobability density function of a peak, p(X), is
given approximately by!

o o0
P = - % [T, ic)dsc/j 500, Dak , a2)
0 0 ’
then substitution of Eq.(8) into Eq.(12) finally gives
X+ cX? + 26X .
—ca T+ o -
p(eX) = S5 exp( —2—13;2—““) (13)
E[ ¢X] can be easily estimated from Eq.(13) as
_ [m 5 _exrfc(e)
E[ cX] = /legxp—(_}—f)-. (14)

Thus it is found from Eqs.(9) and (14) that E[ cX] is proportional to Oy in
a following fashion.

; i »
moxl =[5 ZEl) q 2. 2mCe) 4 pe2plz . o, (s

Since gx is expected to have the property similar to cx's, it will be possi-
ble to use the same proportional constant as in Eq.(15) for the relation
between E[ gX] and gOx. Therefore applyirg Eq.(10) to the right hand side of
Eq.(9) and utilizing Eq.(11), R.M.S. displacements for the Coulomb-set up
system and for the general slip system y1e1d respectively

_ 2mg . _ 2c , exp(-€?)
ex = Ty (I-v) j [1-7%" fece) * 2%, and (16)
o 2mE (€2 / j _2c _ exp(-e?) .
" = s a7 e | P T ey 2t D)

where ¢ = (l-vz)(l—y)2/8w5¢§l N identifies Oy normalized by A and £ is a
nondimensional quantity regarding the input intensity as follows.

Nx = Ox/A = w20x/a , and § = wK/a? . (18)
Particularly when v=1 in Eqs.(16) and (17), then
cx = —% ’_Y' and (19)
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2 2
ghx = le;Y JytyT. (20)

They are the expressions for the Coulomb-linear system and for the bilinear
one, respectively. Eq.(20) tells that, for the bilinear system, Ny takes
the following minimum value when Y~l/3.

m%ngnx= 11'\/6- ’—"11554‘080 (21)
Moveover in the éase of v=0, Eqs.(16) and (17) are reduced to the following

simple expressions respectively.

___161%/7
cNx = ?1:33?1;G§7 E , and (22)

16122
&% = Ty mz &7 - @

Now the case that £ is too low for the response to excurt into the
plastic region enough should be excluded from the application of Eq.(17),
because Eq.(11) is not considered to simply hold under such conditioms.

The plastic deformation of a general slip oscillator, which is defined
by the displacement which is not accompanied with the restoring force at all
in the excursion on the second branch having the plastic stiffness ratio v,
is approximately equal to the displacement of an equivalent Coulomb-set up
system, cX, multiplied by (1-y). Therefore the R.M.S. plastic deformation
normalized by a yield displacement, Np, is obtained from Eq.(16) as

_ 2t 2e . exp(-€?)
1+v V/ (1- erfc(e) SRt s @4
where a suffix p signifles the plastic deformation. Especially when v=1,
Eq.(24) is reduced to

np = ‘H’E'Vz/Y N (25)

which is the expression for a bilinear oscillator. Besides, if y=0, Eq.
(24) is much simplified as

16m2/2
“@wamz £ 26

For the evaluation of the accumulated plastic deformation, which is
calculated from the accumulation of the plastic deformation with respect to
time, it is necessary to estimate the velocity with which the general slip
system excurses in a plastic region. Since this velocity is regarded to be
equivalent to that of the Coulomb-set up system, ¢k, the accumulation of
the absolute plastic deformation, ]xa] becomes

|xal = @ -7 t - |ex] , ' @7

where t means duration time in the stationary state and a suffix a repre-
sents the accumulated plastic deformation. Now paying one's attention
especially to the accumulated plastic deformation with positive velocity,
x%, its expected value will be from Eq.(27)

E[x}] = (1 -7) t - E[|cx[] /2 . . (28)
Because E[ |c%|] has already given by Eq.(5), Eq.(28) is finally reduced,

Np
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with the aid of Eq.(10) and the second equation of Eq.(18), to

A 2n21g

Me=Try 29)
where A} denotes H x}] normalized by A and T is the duration time normalized
by the natural period of an oscillator in a small amplitude, T. Namely,

Af = E[x{]/4 , and T = t/T . (30)

Finally, the hysteretic oscillator with the viscous damping is a little
studied from a viewpoint of energy balance3). The expected energy dissi-
pated by the hysteretic damping is equal to (1+v)oE x}%], whereas the ex-
pected energy per unit time dissipated by the viscous damping is 2hwog”.

On the other hand, the expected energy per unit time supplied to the system
by white noise is 7K. Hence the energy talance yields

(1+v)eE[ x] + 2hwoyt = wKt. (31)
This can be transformed into the following nondimensional form.

1+ | 2hng?

where TNx = 03/wA. The first and the second term -f Eq.(32) represent the
ratios of the energies lost by the hysteretic and the viscous damping, re-
spectively. If no viscosity exists, only the first term remains. This
follows that.all of the energy is consumed by the plastic deformation and
that (i+v)A¥/2n2tg=1, which exactly agrees with Eq.(29) already derived by
the different standpoint.

VERIFICATION BY THE MONTE CARLO SIMULATION

The important expressions obtained in preceding sections are verified
by the digital simulation due to fifty sample functions which have proper-
ties equivalent to those of white noise. Stationary responses have been
evaluated from the values averaged across the ensemble, each of which is
calculated by taking the average over the stationary part that has thirty
units of nondimensional time T.

Fig.3 indicates the comparison of theoretical solutions of R.M.S. dis-
placement with associated simulated results, when v=1 which corresponds to
the bilinear hysteresis, where y=0.1. The ordinate represents the
nondimensional R.M.S. displacement, Ny, whereas the abscissa does the
nondimensional input intensity, £. Two solid lines correspond to theoreti-
cal solutions. Two sets of points close to each line stand for the simu-
lation estimates of the associated systems. It is found from this figure
that theoretical solutions agree quite well with simulated results. Fig.4
is prepared to investigate the effect of Yy on gNx with the fixed £, where
v is still unity. It is recognized that the proposed theory traces the
digital simulation with sufficient accuracy. It is surely obse:ved that
gNx becomes minimum when y is around 1/3. This valley, however, is not so
sharp. Fig.5 shows the comparison similar to Fig.3 when v=0 which corre-
sponds to the pure slip hysteresis, where y=0. The degree of agreement is
generally satisfactory, except when & is quite low. Fig.6 illustrates the
effect of v on gnx with the fixed Yy and £. Theoretical values agree well
with simulation estimates. g”x is not sensitive to v.
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The relation between ﬂp and Y for the bilinear case v=l, when & is
fixed to be 0.1, is depicted in Fig.7. Simulation estimates are generally
greater than theoretical ones but, with increasing Yy, the difference between
the both becomes less. Fig.8 is drawn to investigate the effect of v on TMp.
The both agree from the qualitative point of view, although there exists a
certain amount of quantitative discrepancy. The influence of v is not nota-

ble in this case too.

Fig.9 displays the relation between lz and £ for the bilinear case v=1,
when y=0.1 and t=10. Simulation results are seen to be in extremely good
agreement with the theoretical solution. Fig.l0 represents A\ vs. v with
the fixed vy, T and £. A} decreases in a hyperbolic way with increasing v.
The degree of agreement is quite satisfactory. It is concluded that Eq.(29)
is sufficiently valid over the wide ranges of related parameters. In fact,
it is quite natural that theoretical values are in considerably good
agreement with simulation estimates, because the theoretical solution is, in
this case, believed to be rigorous as discussed previously.

In order to understand the effect of the viscous damping, the ratios of
energies lost by two different mechanisms which are expressed by Eq.(32) are
depicted in Fig.ll, when h=0.01 and y=0.1l, for the bilinear case v=1. The
shaded region indicates the ratio of energy dissipated by the viscous damp-
ing which corresponds to the second term in the right hand side of Eq.(32).
The remainder is the energy lost by the hysteresis corresponding to the
first term. If h is small to this extent, most of the energy is consumed by
the plastic deformation and the effect of the viscous damping can be ignored,

except when £ is quite low.
CONCLUDING REMARKS

The approximate analytical expressions of the random response for a
general slip hysteretic single-degree-of-freedom system have been derived.
They have been verified by the Monte Carlo simulation. As the results,
together with the more detailed parametric studies") which are not presented
here, it has been found that the theoretical solution of the R.M.S. dis-
placement coincides with the coresponding experimental one with sufficient
accuracy, except when either £ is very low or Y is close to unity. The the-
oretical R.M.S. plastic deformation well predicts the associated simulation
estimate, except when either £ or vy is close to zero. Theoretical values of
the expected accumulated plastic deformation agree quite well with simulated
ones over the wide ranges of related parameters. In addition, it has been
recognized that the foregoing expressions derived for the viscously undamped
case can be approximately applied also to the oscillator with viscosity
whose damping ratio is less than a few percent, unless the input intensity
is very low. ¢ '

As the visual representation, the relation among the nondimensional

R.M.S. displacement, gNx, the nondimensional lower yield acceleration, v,

and the nondimensional plastic stiffness, y, is spatially depicted in Fig.l12,
where £ is fixed to be 0.1. The curve a corresponds to the displacement of
a pure slip system whose expression is obtained by substituting v=0 in Eq.
(17). The curve b means the bilinear response given by Eq.(20). The curve
c is of a form of Eq.(23). Fig.1l3 illustrates the similar relation as for
the nondimensional plastic deformation when £=0.1. The curve a is given by
Eq.(24) with v=0. The curve b is expressed by Eq.(25), the plastic defor-
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mation of a bilinear system. The curve c is given by Eq.(26). Fig.l4

shows the relation among, *%, v and Y with the fixed T and £ in a similar
fashion. The curve a is Eq.(29) itself.
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