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SUMMARY

An approximate analytical method is presented for determining the
stochastic properties of the maximum response of both linear and nonlinear
hysteretic systems subjected to nonstationary random earthquake excitation.
The maximum response is defined as a continuous random process in time and
is described in the form of an appropriate first—order quasi-linear differ-
ential equation. It is shown that this expression of the maximum response
is useful in analytical treatment of the problem. Numerical examples are
given for the typical bilinear hysteretic system including the linear sys-
tem. Results of the approximate analytical method are compared with re-
sults obtained by corresponding digital simulation.

INTRODUCTION

For building structures subjected to random earthquake excitations,
it is one of the most important problems to evaluate the structural relia-
bility that the building function will be performed satisfactorily with no
more than superficial damage during an earthquake of moderate intensity and
the structure will be able to resist a strong earthquake without extreme
damage or collapse. The maximum value of displacement response during the
excitation is the significant and simplest response measure representing
the damage in the structure, and is closely related to the first-passage
failure. Exact solutions to the maximum response problem or the first-
passage problem have not yet been found and several approximate methods
have been developed [1~5]. Despite the obvious importance of hysteretic
nonlinearity in structural engineering, most of available methods have cen-
tered on linear systems [1-3]. Other methods have been proposed for a
special class of nonlinear systems [5].

The object of this study is to present an approximate analytical meth-
od for determining the maximum displacement response of hysteretic system
subjected to nonstationary random excitation. It is shown that the maximum
response defined as continuous random process is described in the form of
quasi-linear differential equation. It is also shown that this expression
makes it possible to extend the analytical procedure recently proposed by
the authors for determining the stochastic response, such as displacement
and velocity, of nonlinear hysteretic systems [6]. The stochastic analysis
of the maximum or minimum displacement response have been presented in Ref.
7. In this study the maximum absolute value process of the displacement
response is mainly discussed. The analytical method is illustrated by ex-
amples for a linear system and bilinear hysteretic system subjected to non-
stationary Gaussian white noise. The results of the proposed method are
compared with those obtained by digital simulation.
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FORMULATION OF MAXIMUM RESPONSE PROCESS

The maximum absolute value amit) of the displacement response process

x(t) of a structure within the time interval osrst is defined by
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equation: Fig. 1 Sketch for maximum
am = 1] U(xx> U(Ix]~ am) (2) absolute displacement process.

where U(s) =1 for S0, and =0 for S<0. By introducing the new state
variable U4 defined in the range (-6, 0] as

K= Ixl— am (3)
Eq. (2) is written in terms of the variable M as follows:
Bo= Sgnexd X ~ XU UK = Gulx, X, ) (%)

where sgn(+) denotes the signam function. In the similar way, the maximum
and minimum displacement processes are described as [7]

Tmandt)= gpage XTI Tmax = 2 UL U(X—Xmax) (5)
and
Xmin(e) = N (e Lmin = X UK U(=X+Xmin) (6)

The above expressions of the maximum absolute displacement, the maximum
and minimum displacement processes facilitate an acculate analytical treat-
ment of the first passage problems appearing in structiral dynamics. To
simplify the problem the structural system considered here is supposed to
have a symmetrical restoring force characteristic and the stochastic ex-
citation is also symmetrically distributed with respect to zero. In this
situation, the damage associated with the excursion type failure to be ex-
pected in the structure may be closely related to the maximum absolute dis-
placement response rather than the maximum or minimum displacement re-
sponse. The maximum and minimum displacement responses are thus omitted
in the following analysis.

STOCHASTIC ANALYSIS OF MAXIMUM RESPONSE

The structural system considered is the well-known bilinear hysteretic
system. The nondimensional equation of motion of a single-degree-of-
freedom system is given by
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X + 2hx + Blx,x) = o> nit) (1)

where X denotes the nondimensional displacement with reference to the
elastic limit deformation, h is the critical damping ratio. d&!t) repre-
sents a deterministic envelope function, mit) is a Gaussian white noise
with zero mean and the spectral density level So , and +=&.T 1is non-
dimensional time where &£2. is the natural frequency of the associated lin-
ear system and T is time. The bilinear hysteretic characteristic &|(x,x) ,
which is normalized to have unit rigidity for the first branch and rigid-
ity ¥ for the second branch, is expressed as

FJOLX)=rx+(l-r3Z (8)

where Z is the state variable defined in the range [-1, 1] and can be ex-
pressed in the following quasi-linear differential equation [6]:

Z= - Gg(x,2) 9)
In the above equation,
gg(x, 2 = LU U(Z-1) + U-3U-2-1)]) (10)

By introducing the state variable M as an element of a Markov vector
process in addition to x, Y (= x ) and Z , the joint probability density
function pex:y4,Z,4:it) is governed by the Fokker-Planck equation

Lcpl = .g% + 328y 5%{[2“5* rx+-rzlpy - %{rgz(y,n-gjr}

5 sy P _
_.a_ﬁfg,‘(x,a.k)P] “z 3p =0 (11)
where S1%) = 2 S dtt) (12)

Equation (12) may be approximately solved by expanding the unknown proba-
bility density function in terms of the multi-dimensional Hermite poly-
nomials, but it is rather complicated to take account of the higher order
terms than the second. Therefore, an approximate analysis is efficiently
performed by supposing a simplified form of the joint probability density
function pcx,4,2Z,M;+) . By taking account of the non-Gaussian distribution
characteristics of the state variables Z and m , which are evident from
their definitions, the approximate probability density function

is assumed to be the following form:

POLELBME) = Dz Dy wx, Y, 2, 4i%) + Dz S(fO S:w(x,g.a,p’;f) dp’
+ 9H8(2+|)_5;'w( X, 4,8, jst> d2’ + DuS(z-1 Sluwz,y,z’,p;t)dz’
-) 00 [ ] 00
T+ SOH) § (RO AE [dp’ wr (2, Y, B p5 0 YOS @-0 [ [y wr x4 T p's ) (13)
- o

where
Dg= |-Ul-2->-Ulz=1> , Pu = 1= U (14)
and &¢) 1is the Dirac delta function and w(x,4,2,k:t) is the normal den-
sity function determined by the mean wmu and the covariance matrix v . It
is noted that in general, mu # Ethl and V#IK where ECMI 1s the mean value
of M and |K is the covariance matrix of the state variables x , 4y , € and
. These unknown parameters mux and Y can be determined by using the

method of weighted residuals as follows:

[-]
j Sjg xj'g‘p'z'p’}('p‘ LCFldxdgdzdu = 0 (15)
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for Li+Li+ly+04=1, 2 and L, 0s, 43, b« = 0, 1, 2. Equation (15) can be
reduced to a set of differential equations for moments M(f, fa, 05, 44) With
respect to the state variables x , ¥y, 2 and /4

l;\(ﬂl,ﬂz,l;,!q) = £ M (8-, 02+, 05, 04) + 2‘}’!;(0,4) M(01,02-2, 05, 04)
-'ﬂz { 2hM (f:,&, -03, ﬂ.‘.) +rM (-‘,l +1, -02",.0;,-04) + (1-p Mw‘) p’"ll!"”: -94)}
+.13§M(-9|,1:.+l, L3-1,04) ~ Nz(f‘, 82, 4, _p‘)} + £+ Nu (4,42, !3,14) (16)

where

M, L, ,,03,,04) = E[x‘e'a-?izfi}fe‘ b (a7
Nz(0, 05, 03, 040 = ELxPylszb='pds 504,257 (18)
Nup (2,8, 8,060 = EL{sgntaryg - gmea,g.p} x"y"zp’,u"‘" ] (19)

The operator E[-] means the ensemble average with respect to the assumed
probability density function Pex 4,2, pit) . From Eq. (16), a set of dif-
ferential equations satisfied by EcM1 and IK are obtained as

Kax = 2 Ky ELMT = Np(0,0,0,1)

Ky = -2 [2h kyy +F Key+ (- kyga] +518) Kpp = 2 [N 0,0,0,2) = B Nutoor0)}

ke = 2(ky2~ Nz (o,0,2,0)] ke = Kgpr Nutie, 0,1 (20)
Ky = Ky = 2h Kay = Fkax — (om0 Kaz Kyp = ~2 [2hkgpr rlge+ (1-r> g

+ Nutlo,), e.1)
XxZ = + Kxy — Ng (1,0,1,0) .
xz = Kyzt Ky ! Kep = Kyu+ Nuco,0,1,1) ~Nz(oe, 1)

Kyz = ~2(2hkgz+ rkaa+(-r) kea 3+ kiyy
- Nz(‘b'- \, °)

Since Eq. (20) is a implicit function with respect to wmu and ¥, Eq. (20)
can not be directly solved. By making use of Egs. (13), (14) and Egs. (17)
through (19), ECWl , ECH1 , K , Ik, Nz and Nm are expressed in terms of
muand ¥ . A set of differential equations for mu and W is then derived

and the nonstationary solution under the zero initial conditions can be ob-
tained numerically.

The mean value E[am] and the variance om of the maximum absolute
displacement response are given by

Elam] = 2}'7:: —-Z:-EEG-%-J

and (21)
Om = Vax ((-3) + Z¥ (g4 0 (2-0>-b*~ 2abli-8)>1
+muce-21 /3 _ 2 eripl (22)
where

e e _
anﬁ—m ) b-ﬁe , 6= .u-f-r.(a)

The probability density function p(am;t) of the maximum absolute dis-
placement response can be written as

700



o
p(a».;t>=c)'£( P(X,y, 2, Ixl-am;t) dx ay dZ (23)
vhere € is the normalization constant. The reliability function defined
as the prohability that the maximum absolute displacement response within
the time interval [0, t] is less than a critical level XF is evaluated
by making use of Eq. (23) as follows:
R(Xg;t> = Prob[1x]<xp; 05 TstT = Froblamd<xr]

S:FP(Gn i) dom (2)4)

NUMERICAL RESULTS

Numerical results obtained by the proposed analytical method are pres-
ented for ‘both linear and bilinear hysteretic systems. For purpose of
verifying the results of the present approximate method, a digital simula-
tion analysis was performed. The ensemble size for all cases was 500.

Linear System. The analytical results of a linear system to a sta-.
tionary Gaussian white noise are shown in Figs. 2 to 6 for the cases.
h = 0.01 and 0.1. In these figures, to is the nondimensional natural peri-
od of the system, 2m. The mean value ECam3 and the standard deviation om
of the maximum absolute displacement response are shown functions of
time in Fig. 2. The standard deviation ox of the displacement response is
also plotted in Fig. 2. These values are normalized by the stationary val-
ue oy Of o'x where ds= ox(®) = /FSe,/2h . Fig. 3 shows the transition of
the probability density function p¢am;t) with ¢/to . The reliability func-
tion is shown as a function of t in Fig. 4 for various values of the nor-
malized eritical level Xr/¢s . The ratios EL[amt)]/&x(t) and omtt)/oxlt)
are plotted in Fig. 5. From Egs. (21) and (22), the ratios have the as-
ymptotic values, respectively, in the limit as t » 0

., ECaQmtty
R IR

It is found that Eram3/ox is significantly influenced by the damping ratio.
Fig. 6 shows the comparison of the mean value E[am] with the mean value
ECXmax] of the maximum displacement response. From this figure, it is
shown that the difference between ECawl and ErLxmaxl increases as the
damping ratio increases. The results obtained by the simulation are also
plotted by dots in Figs. 2, 4 &nd 5 and by bar graphs in Fig. 3.

Bilinear Hysteretic System. The analytical results for a vilinear
hysteretic system with h = 0.01 and r = 0.1 and 0.5 are shown .n Figs. T, 9
and 10. Also shown are the results of the simulation indicated by dots.
Fig. T shows ECawl, Om and ¢x under the stationary excitation with var-
ious values of s, . As an example of nonstationary excitation, an envelope
function used here is shown in Fig. 8. 1In Fig. 9, ECLam, o'm and o= are
plotted for the case amse = 0.1. TFig. 10 shows the reliability function
for various values of Xxg .

Generally good agreement exists between .the analytical and simulated
results for the mean value and the standard deviation of the maximum abso-
lute displacement response. The simulation estimates of reliebility func-
tion are in good agreement with the analytical curves at high value range
of the reliability and for the short duration of excitation. It is found
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that the analytical method gives satisfactory results for systems with the
value of critical damping ratio in a wide range usually used. It is also
shown that the present method can be used to predict the mean value and the
standard deviation of the maximum absolute displacement response for the
bilinear hysteretic system as well as a linear system. However, for the
case of strongly nonlinear hysteretic system the method in this study is
less accurate. The assumption of the approximate probability density func-
tion given by Eg. (13) becomes to be invalid because the probability densi-
' ty of the responses particularly concerened with M is distorted from the
assumed density function. If the more acculate analysis is required, the
probability density function of the state variables must be expressed by
taking account of the moments or quasi-moments of higher order than the
second.

CONCLUSIONS

~ An analytical method to determine the maximum absolute response of
both linear and bilinear hysteretic systems subjected to nonstationary
Gaussian white noise has been developed. It has been shown that the maxi-
mum absolute displacement process can be expressed in the form of the
first-order quasi-linear differential equation. It is emphasized that this
expression of the maximum displacement response is extremely useful in ana-
lytical treatment of the problem. The nonstationary statistics of re-
sponses including the maximum displacement have been found as the solution
to a set of the first-order differential equations derived from the Fokker-
Planck equation. The probability density function of the maximum absolute
response and the reliability function have been evaluated. A comparison
of the approximate analytical results with the results obtained by digital
simulation has indicated the usefulness of the proposed method in predic-
ting the stochastic properties of the maximum displacement response of both
linear and nonlinear hysteretic systems.
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