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SUMMARY

Mass, stiffness and damping characteristics of structures are uncertain
quantities and thus are random variables. Tc evaluate the effect of uncer-
tainties of these structural parameters on the structural design response
and acceleration floor response spectra, analytical and simulation
approaches are presented. In the analytical approach, the nonlinear
response expression is approximated by a Taylor series in which terms up to
second order derivatives are retained. An analytical - cum - simulation
approach is described which can be used to establish validity of the
analytical approach. A comparison of floor response spectra results
obtained by the two approaches point to a need for further investigation
for development of the afalytical approaches by inclusion of higher order
terms in the series.

INTRODUCTION

In order to establish a reliable seismic design response value for a
structure and seismic design input for supported subsystems it is important
to consider the effect of uncertainties of structural mass, stiffness and
damping values on the response. Especially, the effect of these uncer-
tainties on the seismic input for the secondary systems (floor response
spectra) can be quite significant because of amplification effect of the
structure on a ground motion. Some impirical approaches are commonly used
to include this effect (such as widening of floor response spectra peaks).
In the past, simulation approaches have been undertaken to investigate this
effect; see ref. 1. Herein, an analytical approach is being proposed to
incorporate these parameteric uncertainties in the design response. Also,
a modified analytical - cum - simulation approach has been described for
verification of the analytical approach.

ANALYSIS

usnpone  of Primary Structure

Seismic design response in a structural member can be expressed in
terms of dynamic characteristics of the structure like frequency, mode
shapes and participation factors and seismic inputs like ground response
spectra as follows (2):
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in which wj is the jth natural frequency; R(wj) is the ground response
spectrum value at frequency wj and corresponding modal damping Bj; Y4 is a
modal participation factor defined as ¢![M]{r} in terms of mass normalized
relative displacement modeshape ¢4, mass matrix [M] and influence vector
{r}; {qs} is the jth mode shapes of the response quantity q which is related
to the relative displacement modeshape ¢4 through a transformation matrix as
{qs} = [T1{¢5}; factors Ay, Bsy, etc., depend upon the frequency ratio =
wj;wk and moaal damping coefficients. These factors are explicitly defined
in ref. 2. The inclusion of the double summation term in Eq. 1 may be im-—
portant whenever two structural frequencies are close to each other. It is
desired to obtain the variability (expressed as variance or standard devia-
tion) of the response due to variability in the structural mass, stiffness
and damping characteristics. To obtain this variability either the Monte
Carlo type simulation approach or analytical approach can be used.

In the analytical approach, the statistical moments of the response,

, are obtained in terms of statistical moments of the basic wvariables.
Each term in Eq. 1 depends upon the variables which affect the mass, damping
and stiffness characteristics of the structure. The variables which effect
mass and stiffness could be taken as variables like mass density, dimension
and elastic modulus. Or to simplify, one may like to assign variabilities
to the mass and stiffness matrices of the elements or a group of elements.
Such an approach may be desirable when the structural model to be analyzed
consists of widely different element characteristics. For example in a com-
bined soil-structure model, different random variables may be assigned to
soil, concrete or steel elemental mass and stiffness matrices. Herein, how-
ever a simplified case is described where it is assumed that the system mass
and stiffmess matrices are random variables such that

M = MUy, (K] = (KU )

in which [M] and [K] are the mean mass and stiffness matrices, and U_ and

U, are the random variables with unit means and 0_ and 0, ag their Stan-
dard deviations. This assumes that the mass and Stiffness characteristics
of each element are perfectly and positively correlated. It is also assumed
that Uy and Uy are independent, although a conspicuous dependence between
these variables could be incorporated with some modifications.

Similarly for damping, each modal damping could be assumed to be a ran-—
dom variable. However, herein it is assumed that damping values in all modes
are the same and they are characterized by a single random variadble B with
the mean value of B and the standard deviation of GB. :

The response Rq defined by Eq. 1 can now be expressed in terms of a
series from which mean and variance of Rq can be obtained as follows
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Herein, only second orier terms in the series have been retained. In Egs.
3 and 4, g = Rg, £ F Rq = right hand side of %q. 1 and U5 = Uy, U2 = U
and U3 = 8. Thus 0] =0, 02 = g, and Oy = Ope All derivatives in this
equation and subsequent gnalysis are obtained"at the mean values of Ujs.
In cases where frequencies are close and the double summation terms contri-
bute significantly to the response, it may be necessary to retain the
second order terms in Eqs. 3 and 4; otherwise these may be dropped.

To use Eqs. 3 and 4 it is required to obtain the derivatives of the
functions g and f with respect to Uj's. These functions depend upon q;,
Ys, and ws;. Thus it is necessary to obtain the partial derivatives of these
quantities with respect to Uj's. These derivatives can be obtained as des-
cribed by Fox and Kapoor (3), as

ow
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A prime over a vector represents its transpose. In terms of these derivatives
the derivatives for the modeshape of a response quantity {qj} and the parti-
cipation factor Yj can be defined as follows:
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For the variables Upand Uy defined by Eq. 2, Eqs. 5 and 6 reduce to the
following:
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In the derivation of these equations the orthonormality of modes with
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respect to [K] and [M] matrices has been exploited. These partial deriva-
tives with respect to the damping coefficient variables are, of course,
zero if proportional damping assumption has been made.

The derivatives of response spectrum values are also required, and
these can be shown to be:
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in which —55—1_-can be obtained from the response spectra curves provided

as design input. For Newmark type of ground response spectra these deriva-
tives and derivatives with respect to damping coefficients can be obtained
from the equations provided in Ref. 4.

Factors Aj, B; etc. are defined in terms of frequency ratio r; and
damping coefficients, and thus are affected by Uy, Uy and B. Their deri-
vatives can be obtained from expressions defined in ref. 2. The derivative
expressions are involved, but do not present any computational difficulty.

It is ofzi terest to note that in view of Eqs. 7 the partial deri-

vatives of (qj¢j) and (q.qk¢j¢k) are zero with respect to Uy, Uk and B.
This simplifies™ the expr%ssion of the derivative of Rq as follows:
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The expression for the derivative of 2 with respect Uy is similar.
Second order derivative of Ry required in Eqs. 3 and 4 can also be obtained
similarly.

Seismic Design Input for Secondary Systems

Seismic design inputs for secondary supported systems are commonly
defined in the form of floor acceleration spectra curves. Because of
structural amplification, such inputs are likely to be affected more
strongly by the variability of the supporting structural parameters. To
evaluate this variability again analytical and Monte Carlo approaches can
be used. These are briefly described in the following sectioms.
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Analytical Approach:

Since the analytical expression defining floor spectra has become
available now, ref. 2, the use of analytical approach, which is similar
to the one discussed in connection with the variability of structural
response, can be made and seems attractive. The expression defining the
design floor response spectrum value for floor u at an oscillator frequency,
Wy and damping B can be written as

N
2 _ 2,2 — 2 = 2
R (W) J_il Yj¢j [AjR (wj) + BjR (w1
+2§ZYY1<¢¢1<[C (w)+DkR(w)+E R(w)] (10)
J

in which A B jk’
frequency ratio’fl = wj/wo and Y} = wk/mo and oscillator and structural damp-

jk’ E&k are the factors which are defined in terms of

ing values of B, and B, respectively. The expressions for these factors
are given in ref. 2. (Notations are different in this reference.) With £
now defined by the right hand side of Eq. 10, the mean and variances of the
response spectrum value can be obtained by Eqs. 3 and 4. The approach re—
quires the first and second order derivatives of factors A s, B: which can
be obtained for the expression defined in ref. 2. The algebraic manipula~
tions, though straightforward are significantly'more involved. The details
of these will not be provided here because of lack of space. The numerical
results indicate that it is necessary to include at least the second order
terms to obtain the correct mean and, more importantly, the variance of the
response spectrum values. It is so because of the highly nonlinear nature
of the function f£f in Eq. 10, especially for spectrum values near the struc-
tural frequencies. As indicated by numerical results presented later, it
even seems to be necessary to include the third and maybe even the fourth-
order terms in the series expansion of the function. This makes algebraic
manipulation significantly more involved. However, as the analytical ap-
proach to obtain this variability has distinct advantages over the Monte
Carlo approach, it is still desirable to improve the approach by inclusion
of more terms. More research work in this direction is required.

Monte Caxlo Approach:

To check the results obtained by the analytic approach, a modified
Monte Carlo approach has been used. (A direct Monte Carlo approach in which
sample values of [M] and [K] are generated to defime a population of systems
can become prohibitively expensive.) This approach which is essentially a
combination of analytical and simulation approaches, is briefly described
now.

The dynamic characteristics w3 ,¢ and vy, which are required in Egs. 1
and 10 are functions of mass and stif ness variables Um and Uk’

o = REWLTY L 6 = g0 A (1)
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These functions can be expanded in Taylor series about the mean values
of variables Uy and Ux. If the variances of Uy and Uy are not large, in-
clusion of the first order terms may be adequate. Only the first order
terms have been considered in the following development. Thus the mean
values of Wy and ¢; are the values obtained by eigenvalue analysis of the
system with mean values of the mass and stiffness matrices. The standard
deviation obtained from the linearized expansion can also be shown to be
as follows:

Y72 1 1
Oy = 3Y¥% * 9 » c¢‘ =3 ¢j°ﬁ » O, = E'chm (12)

J J J

Furthermore these characteristics are correlated and the coefficient
of correlation between these can be shown to be

1, 0 =1
o] ' (13)
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in which py . represents the correlation coefficient between variables x
and y. Perlect correlation between some characteristics may be noted. .

With these correlations established, the linear mean square estimation
theory can be used to obtain one variable if another variable is known.
For the values of standard deviations and correlation coefficients in Egs.
.16 and 17, it can be shown that the value of one variable in terms of an-
other perfectly correlated variable value can be written as follows

Y3 1 i ()]

.sdn which a bar over a quantity represents its mean value.
Natural frequency and modeshape values are however not perfectly
correlated. These values are therefore generated by gemerating independent
values of some related variables with appropriate means and variances and
transforming them back to correlated values through the modal matrix of the
covariance matrix of w; and,¢j. This approach gives theoretically correct
values if w; and ¢; are assumed to be jointly normal. The values of Yj's
and other ¢53's are then obtained using Eq. 14. A set of values of wj,yj,¢j
so obtained are then used to generate a sample floor response spectra.
These sample floor response spectra are then statistically analyzed to ob-
tain the mean and variance of a floor spectrum.
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It may be noted that eigenvalue analysis is not required to be carried
for each set of sample values of the variables, Uy and Uy, yet the correla-
tion between the dynamic characteristic is included in generating their
values.

NUMERICAL RESULTS

Numerical results for floor spectra were obtained for the structural
and earthquake input model used in ref. 2 by the analytical approach and
the Monte Carlo procedure. Monte Carlo approach was used only for a few
oscillator period values because of large computational cost involved.
Table 1 shows the mean and standard duration of the floor response spectrum
values at two selected periods. The values obtained with the lst order
and 2nd order approximations of the series expansion are shown for com-
parison along with the values obtained by numerical simulation.

The results though not conclusive and complete do point out the need
for further improvement in the analytical approach. The results for lst
order and 2nd order approximations do not seem to differ much for the values
presented in the table, though larger significant differences can be expected
near structural frequencies where a response spectrum shows dominant peaks.
Unfortunately, some unresolved formulational and numerical difficulties were
encountered in the analytical approach for the resonance case (oscillator
period equal to structural period) which also needs further investigation
and research and developmental work.

Also the standard deviation obtained by either analytical or Monte
Carlo approach can not be used in the calculation of the design response
by the mean-plus-k-standard-deviation type of approach, as the probability
distribution of the floor response in view of the structural uncertainties
is a strongly skewed function near structural periods. Such skewness can
be ascertained by obtaining the third order statistical moment of the
response. These results must, however, be compared with the simulation
approach results with a large sample size. These additional problems are
under investigation at this moment.
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TABLE 1

Mean and Standard Deviation of Floor
Acceleration Response Spectrum Value Obtained
by Analytical and Simulation Approaches

Mean Value, G-Units

Std. Deviation, G-Units

Oscillator Analytical Simulation | Analytical imulation
Period Approach Approach
1st 2nd 1st 2nd
Secs order order order order
o (2) (&) ) ) ® €))
.09 1.1015 | 1.0710f 1.1117 |1.0474 | 1.0470 .5407
.10 .6199 L6114 .8165 L2772 L2771 4969
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