A SIMPLIFIED RANDOM VIBRATION ANALYSIS OF EARTHQUAKE EXCITED
INELASTIC MOMENT-RESISTANT FRAMES
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SUMMARY

Inelastic plane frames are modelled as a collection of
lumped masses, which are connected by elastic and inelastic,
hysteretic spring elements. A random vibration procedure is
outlined for such systems, which a) replaces each inelastic
spring by an effectively linear one and adds effective vis-
cous damping due to hysteresis, b) takes care of the drift
being developped in each inelastic element and c) takes care
of any possible combination of elastic or yielding states of
inelastic spring elements.

The procedure is applied to a two-storey frame with
various system parameters. In an example the frame is opti-~
mized in order to obtain equal ductility ratios or equal
energy dissipation rates in each storey.

INTRODUCTION

During severe earthquakes many structures are loaded
beyond their elastic strength capacity. The additional
strength capacity due to inelastic structural behavior might
be considered as.-additional safety against ultimate failure
but economic considerations require it be taken into account
in design.

A variety of investigations about inelastic structural
seismic response is known for different types of structural
models e.g.,[1-3]. The method of analysis adopted in such
investigations is time integration method. It may be used
for nearly any type of inelastic behavior. The main disad-
vantiages of this method are found in its costs, which be~
come particularly high if several input motions are conside-
red.

Random vibration techniques were found to be useful
with linear structures EQ,SJ. The problem of inelastic struc-~
tural random response has been mainly considered with single-
degree-of-freedom (SDOF) structures [ 4,6,7] and rarely with
multi-degree-of-freedom (MDOF) systems[8,9] . The present
paper outlines a procedure for MDOI moment resistant frames
with inelastic joints. The method is much less time-consu-
ming than time integration and is therefore well suited for
parameter studies. The method seems appropriate for even
strongly yielding systems. ’

EQUATIONS OF MOTION

Fig.1l shows a model of a multi-storey plane frame. Du-
ring strong motion earthquakes plastic hinges may develop
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near the joints of columns and girders. Due to axial load ef-
fects plastic hinges in the columms may ultimately lead to
total collapse of the structure, if not designed pr?perly.
Some design procedures therefore require that vielding shguld
primarily take place in the girders. In other cases th? gir-
ders are very heavy and rigid and the structural behavior is
similar to that of a shear-beam. Plastic hinges develop only
in the columns of such structures.

For the dynamic analysis of a frame like in Fig.1l it is
assumed that a) the mass is lumped at the joints of column
and girders and b) the moment-curvature relationship of joints
is given as an inelastic, bilinear hysteretic relationship.
The frame may then be considered as a collection of lumped
masses m, being connected by inelastic joints and elastic
spring elements. The latter ones model the elastic stiffness
of the column and girder beam elements, respectively. For
symmetric frames there is one rotational (¢ ) and one trans-
lational (x.) degree of freedom for each storey. Neglecting
inertia of rotation the following equations of motion are ob-
taine.d. —-
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Herein M . and M_ . denote the moments in the joints of the

i~th colfihfi and g%tﬁer, respectively. The coefficients of the
stiffness matrix are hysteretic function of their correspon-~
ding inter~storey displacements or rotations. The elastic
stiffness coefficients may be found in Ref.1. The rotational
degrees of freedom can only be eliminated in Eq.1 if the
(elastic or yielding) state of each inelastic joint is known.
For the sake of simplicity only shear-beam type frames are
considered in the following.Eq.1 then simplifies to

»e

m %, = ki(xi—i'xi)+ci(xi—1'xi) ? i=1,..n-1
) + ki+1(xi+1_xi)+ci+1(xi+1'xi) - m;i (3)
mX = kn(xn_i—xn)+cn(xn_1—x )~m_ii

where damping forces ¢; have been included. The index c has
been omitted. Bilinear hysteretic behavior (Fig.2) will be
assumed.

METHOD OF SOLUTION

Basic Equations

The present method is an extension of a linearization
scheme for SDOF systems [7] to MDOF systems. For MDOF-struc-
tures interaction between different inelastic or
elastic spring elements has to be considered as a new feature
in the analysis. Each inter-storey displacement is written as

. b T W]
where 7. denotes the low-frequent drift component being deve-~
lopped due to yielding of the inelastic spring element i. The
restoring force of this element may considered to be effecti-
vely proportional to the z. component. The solution for the
z. components is therefore obtained from a system of lineari-
zed equations

=z, 4y (&)
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where €., and k, denote the effective damping force and effec-
tive stiffness| respectively, of inelastic spring element i.
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For stationary random inputs the covariance matrix with
elements < z.z.> may be obtained from a system of n linear
algebraic eqﬁa ions using the state vector approach [10]. The
earthquake excitation has to be modelled as filtered white
noise for that purpose (e.g., with a Kanai-Tajimi power spec-
tral density function Sﬁ(w)).

The effective parameters are obtained from temporal ave~
rages as

k, = kio(1 -fE: qij) + 2: kij,yqij
_ J J (6)
c,; = cio(i - :% qij) + :g ©ii,v%

where q.. denotes the mean fraction of time during which ele-
ment i in a yieldings cycle, if a structural yielding con-
figuration j is assumed. A structural yielding configuration
is specified by assuming each inelastic element to be in an
either elastic or yielding response cycle.k. and c., denote
the nominal stiffness and damping force of tlement 1S The
weighs q. . are evaluated frgm

ij »_#

R a5 = exp (-5 ZZuklxkxl) (7)
where x., are the yield displacements and the elements of
the inverse matrix of the covariance matriX<{,C.> . C;ly
those inelastic elements have to be considered i eq.."),
which are assumed to be during a yielding cycle in structural
vielding configuration j. The solutions for<kaC£>. are.ob-
tained from Eq.5 if c¢. and k., are replaced by ¢¥*. #and k.. as
follows * 1 1J xJ

(k;j’czj) (k5 1¢;,) if element i is not in a yielding cyclﬂ

kij,y'cij,y) if element i is in a yielding cycle

__The yielding stiffness (ki. ) and damping force (c.. _)
which are ?ffective during a ylélXing cycle, depend uponl%hx
absolute yield increment m,.. [7] during structural yielding
configuration j. £l

k. . = k.| (0, .-si - P -
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_ -1 » &
8;; = Zos (mdﬁu -2xi)/(mAU +2x7) (8)
. ) k, m, . xi(I-d'i)
ij,y — w2
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Likewise to SDOF system [7] an approximation for the average
yield increment ig found from an energy balance as

C . s . . k™. . .
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A coefficient Y, has been introduced in order to account for
filtered white Hoise input spectra S.(w) as in [11] . w_ de-
notes the first natural frequency of'the associated linfar
structure. It is observed from eq.9 that the amount of yiel-
ding does not only depend upon the input strength but is also
affected by interaction with neighbouring elements. Smaller
yield increments are expected, if two neighbouring elements si-
multaneously yield than if only one is in the yielding regime.

(9)

The eqs.(6) to (9) have to be solved iterati:clw., Only -
fow iteration steps are usually regquired.
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Drift Components of Response

Once the solutions of the z,-components are found the
drift component of response 7. of each element may be evalua-
ted likewlse to SDOF structures [7]. The variance equation
has the general fgrm

d6

7 =
T f(sni ’625 B ,ci,ki,o:i) (10)
and is solved numerically, which gives the transient and stea-
dy-state solution Sﬂi(t). The mean yield increment m,, is ob-
tained from averaging over all possible structural yiélding
configurations as

my, = (%mbij qij)/_)zqij (11)

The function f( ) may be found in [ 7). The time step At app-
lied in the solution of eq.(10) can be taken in the order of
the nominal period of the structure. In case of vanishing
upper yield slope (o.=0) eq.(10) can be solved analyticallyﬁﬂ
The frequency mquay be taken as a representative frequency

of the drift component Ny 6.
Z:

_ 1
Wa, = & N,

exp(-x;/ﬁig) (12)

where N.; denotes the mean clump gize of crossings of the
yield displacement level x. by the (effectively linear) z.=-

. PR i . i
component. Again, it is folind in [7].

Hysteretic Energy Dissipation Rate

The hysteretic energy dissipation rate E 3 is given by
the number of yielding cycles per unit time and the mean
vield increment as

E =k, W
io 7

»
n, i Jma X N /n (13)

Inter-Storey Ductility Ratios

The inter-storey ductility ratio is defined as
max (xi(t)-xi_i(t))
Py = > (14)

1
X

i
It may be computed from

. =6 r. (15)
Pl,p x,=%, 4 i,p
The peak factors r. may be evaluated as for SDOF—systems[?].
The variance of the’ " inter-storey displacement is
62 x., (t) = 63, (¢) + 62, (16)

It is assumed that the maximum response occurs“ht the end of
the considered time interval.

Limitations of the Method

The method is an approximate procedure based on effective
structural properties during stationary (elastic or yielding)
response cycles. The method should therefore not be used for
very short earthquake inputs with only one or two strong ac-
celeration pulses, where even the z. components reach statio-
nary conditions. But the present approach can be used for non-
stationary input motions if their intensity is slowly varying
with time. Eg.(5) has then to be resolved after each time
step in order to obtain the nonstationary zi~components.
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The procedure tales care of all possible yielding confi-
guration. For structures with many degrees of freedom the to-
tal number of structural yiélding configurations becomes very
high and the iteration procedure might then become rather
lengthy. A practical methodology for restricting the analysis
to the most important structural yielding configurations has
to be adopted for such cases.

No simulation results are available at this point in or-
der to determine the accuracy of the method. However, because

the procedure is an extension of a linearization scheme recent-
ly proposed for SDOF structures [7]. the accuracy might be ex-
pected to be similar to there. The results for SDOF systems
show good agreement to simulation estimates.

APPLICATIONS

The method is illustrated with a two storey frame. The
¢round motion is assumed to have a power spectral density
function of the form 5 o

he “
1+ lsg(m/mg)

o 2 2,2 2 2
(w™=w) +4Cg(m/mg)“

z

(17}

S.(w) =58
u

The parameters are selected as L = 0.,6"and w_ = 18, The du-
ration of motion is 20 sec. € €

There are three different structural yielding configura-~
tion that might occur (1.first storey yielding and second sto-
rey elastic; 2. both storeys yielding; 3.first storey elastic
and second storey yielding). The ratio of nominal stiffnesses
k1 /k determines which one is dominating. The calculations
£o8 s%gtems with stiffness ratios k1 /k about one and equal
yvield displacements x?:x” show that gie%aing configuration 2
becomes more and more dominating with increasing excitation
strength. Tor k2 >>k1 the structure behaves like a SDOF sy-
stem and good agreemént was found to results known for such
systems. In this case the energy is mainly absorbed in the
first storey, which leads to small amplitudes of response in
the upper storey (like in a base isolation device).

MFig.3 gives results for the r.m.s. inter-storey displace-~
ments 6x. - y. for various combinations of structural parame-
ters. Thé value S may be related to the mean maximum gr jund
acceleration A, which, for the given parameters, yields

A= 3k.3 8" (18)
It is observed from Fig.3 that tBe normalized response of the
first floor for Co£0 approaches a minimum with increasing in-
put strength, whereas no such minimum is found for the
upper floor. The weaker storey seems to absorb more and more
energy as the excitation strength increases. This has been al-
so observed in.[9j. The results for constant input spectra
(S..=S =const) are similar in shape to those for Kanai-Tajimi
inﬁutospectra. This does generally not hold for structures
with nominal fundamental frequencies w, above w_. The effect
of nominal viscous damping (c. =20 m. k.?2) is particularly se-

- io o i Tio

vere for low input strength.
Comparison to SDOF systems

The SRSS superposition rule in connection with inelastic
response spectra is sometimes applied to even nonlinear struc-
tures. For the purpose of comparison the elastic mode shapes
are therefore computed for the structure with parameters of

717



case 1 in Fig.3. The ductility ratios are then evaluated as for
SDOF-structures [7] and mode superposition is applied. The fol-
lowing results are obtained:

<py> SDOF-an. MDOF an. </M2”>° SDOF-an. MDOF an.
S = SOx: 3.11 2.64 k.65 4,22
sg =150x 8.69 3.27 14 .40 8.01

Such a superposition method seems to be acceptable only for
low values of input strength.

Optimization of Structural Parameters

The preceeding and many other examples show that inelastic
structural response is often concentrated in only one or a
few members of tlxre structure. However, for many structures it
is sometimes desired to distribute the energy dissipation,
about equally among all members. This is illustrated in Fig.lk,
where a two-storey frame is considered with fixed fundamental
frequency ® _=1.22 cps and damping [4=0.02. The optimization
criteria to be applied are either a) equal ductility ratios By
or b) equal energy dissipation rates E, . in both storey. The
ratio 3c=k1o/k is taken as design pagéﬁeter. The optimum de-
sign valuex t is nearly identical for both criteria. x tis
about 1.55 £8R‘s =50xi and 1.8 for S°=150x:. It is also ©
observed that even small deviations of X around X ¢ may lead
to rather large differences in the storey ductili%§ ratios or
energy dissipation rates. Depending on the input strength an
optimal design value derived from a linear analysis may be far
from -as optimal design value therefore for a nonlinear struc-
tures (In the present example j%pt was 1.50 for a linear struc-
ture).

Also given in Fig.4 is a simulation result for the ducti-
lity ratio of a SDOF-system. As anticipated, the solution for
<Py is close to that value, if X becomes very small.

CONCLUSIONS

A new method for the analysis of inelastic moment-resi-
stant frames under random earthquake excitation has been pre-
sented. Bilinear hysteretic behavior has been assumed for the
inelastic joints. After introducing effective stiffness and
damping parameters a linearized system may be obtained, the
response of which is superimposed to the drift response of
each inelastic joint.

Based on the presented as well as other examples the fol-
lowing conclusions may be drawn:

1. The inelastic response tends to overproportionally con-
centrate in the weaker structural members. This implies that
the mode shapes derived from the effective structural parame-
ters may become very different from those of a linear structu-
re.

2. The response is rather sensitive to small variations



in &., if o is small.

3. The method represents an efficient tool in order to de-

sign optimal structures with respect to given design criteria.

4, Even for nonstationary structural response, the nume-

rical efforts required in the present analysis are always sub-
stantially smaller than those for a time integration analysis,
where much smaller integration time steps have to be applied.

10
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