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SUMMARY

Although practical aseismic design of structures is based on the best
available knowledge, there still exist some uncertainties in both structur-
al modeling and earthquake loading. In this paper, the author tried to
evaluate the effect of uncertainties on the earthquake response of tower
and pier systems of long span suspension bridges by dynamic analysis using
linear statistical approximation. Optimum aseismic design with probabilis-—
tic constraints due to uncertainties of excitation using random vibration
theory and dynamic reliability analysis is performed.

INTRODUCTION

Studies on aseismic design of long span suspension bridges are espe-—
cially important in Japan because of Japan’s well-known earthquake histo-

ry. According to these studiesl), aseismic design of the tower and pier
system is very important, since this system and many earthquakes have simi-
lar frequencies. The aseismic design of these systems have a considerable
safety fagtor since earthquakes and structures both involve large uncer-
tainties. Thus, a more rational, safe and economical aseismic design is
possible if we can clarify the effect of uncertainties of the earthquake
response and use an optimization technique.

In the tower and pier system, the elastic modulus of foundation and
the damping constant are, among many, the most important uncertainties.
The effect of these two structural uncertainties on dynamic response has
been calculated herein by random characteristic analysis and linear sta-
tistical approximation. The uncertainties of.earthquake excitation are
estimated by the power spectrum density obtained from a statistical analy-
sis of an earthquake. As the earthquake is assumed to have zero mean and
to be a stationary probabilistic process, variances of the displacement
and velocity can be evaluated based on random vibration theory. Failure
probability can be computed through dynamic reliability theory using dis—
placement and velocity variances. Thus, it is possible to formulate opti-
mization by a probabilistic approach using failure probability as the
constraint.

EFFECT OF STRUCTURAL UNCERTAINTIES ON THE EARTHQUAKE RESPONSE

The solution of the eigenvalue problem in an N-degree—of-freedom
system can be written as:
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where M is the mass matrix, K is the stiffness matrix, A, is the j-th
eigenvalue and ¢j is the j-th eigenvector. When M and K are considered to

be functions of the random variables r, which are assumed to be stochas-
tically independent of each other, Aj and ¢j are functions of r, similarly.

Now linear perturbations may be formed in order to expand these functions
in Taylor®’s series about the mean value of r, and truncating the series

2)3),

after the third term, the mean value of Xj and 5j are finally given by
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The variances of Aj and ¢j are then
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The derivatives of the eigenvalues and eigenvectors have been obtained by

4 . . .
Fox et al ). The maximum response of the structure can be estimated, if the
process is stationary random and a Gaussian distribution with zero mean
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where Gx and Gi represent the standard deviation of the response x, and

its time derivative %, and T is the duration time of the respomse. The
mean values and variances of the maximum response [x max 20 be obtained
using eq. 6:
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The variances of x, X are obtained using white noise excitation.
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where Sy is the white noise level, Fi and Fk are i-th and k-th participa-

tion factors, w; and W are i-th and k-th natural frequencies, Bi and Bk

are i~th and k-th damping constant.
OPTIMUM ASEISMIC DESIGN WITH PROBABILISTIC CONSTRAINTS

Dynamic Response Analysis by Probabilistic Constraints

The equation of motion for a multi-degree-of-freedom system can be
written as:

MX+CXxX+Kx=-M?32 teesessrsesestsnssrrsncnas (14)

where M, C and K are the mass, damping and stiffness matrix and X and Z
are displacement and earthquake acceleration vectors. The earthquake
excitation model is represented by a power spectrum density function. As
the earthquake is assumed to have zero mean and to be a stationary prob-
abilistic process, the response is assumed to be the same process when
the time is long enough. The variances of the displacement and of the
velocity can be evaluated based on random vibration theory:
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where Hi(w) is the i-th frequency response function and SF(w) is the power

spectrum density function. Failure probability of the system can be com-
puted through dynamic reliability theory using displacement and velocity
variances:

T % V2
Pf (v, -v)=1-exp - 7;-72:-exp (- 2 0;7‘)] 17)

where V refers to the barrier value, Pf(v,—v) refers to the failure prob-

ability and T is the duration time of the earthquake.

Optimization

Design Model To save calculation time and to improve the reliability
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of the solution,.the moment of inertia of the tower and the longitudinal
width of the pier are selected as design variables.

Objective Function The generalized cost, W, is selected to be the
objective function:

W:WT+KWP $8060000 0000000600000 600060600000GCGCO S (18)
where WT represents the weight of the tower and WP, of the pier, and K re-~

fers to the ratio of the unit cost of the pier to that of the tower.

Constraints The following constraints are considered:
(1) Failure probability of the pier top displacement does not exceed a
given allowable failure probability.
(2) Failure probability of the tower shaft stress does not exceed a given
allowable failure probability.
(3) The pier is safe against overturning.
(4) The tower shaft is safe against buckling.

Optimization Technique Objective function and constraints obtained in
this way become nonlinear and non-differential, so SUMT by Powell’s
direct search method without differential is employed as the optimization
technique.

NUMERICAL EXAMPLES

Results of the Effect of Structural Uncertainties

As a numerical example, the tower and pier system shown in Fig. 1 is
considered. The structural uncertainties contained in the system have been
investigated in Japan, but it is impossible to estimate theéir true random~
ness. The system has bulky dimensions and is constructed in water which
increases the uncertainty of the system. From past investigations, the
elastic modulus of foundation and the damping constant are the most impor-
tant uncertainties (among several), and coefficients of variation of these
uncertainties are 0.2 (lowest estimate). It is a well known fact that the
system has the property of accession and separation of natural frequencies.
In this model, the same property can be observed, as shown in Fig. 2. Foun-
dations A to D are investigated in this study.

In order to illustrate the difference of linear statistical approxi-
mation and Monte Carlo simulation, natural frequencies were computed by
both methods and the results are shown in Table 1. These computation were
performed using, for the uncertainty of the system, the elastic modulus of
foundation, which has 0.2 in coefficient of variation. In Table 1, 'E[w],
olw}, CoOViw] represent the mean, standard deviation and coefficient of
variation of the natural frequencies, and the upper value are the results
by linear statistical approximation and the lower ones are Monte Carlo
simulation results. The values enclosed in heavy lines were the modes
where the vibration of the pier was predominant. These modes are very im-
portant in order to know the dynamic response of the system. From Table 1,
both results show a good agreement, especially for the enclosed in heavy
line modes, while the variation of natural frequencies in such coupling
modes are larger inm proportion than the variation of other modes for all
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foundations. Thus, the variation of the elastic modulus of the foundation
shows a large influence on the variation of natural frequencies which are
predominant in the pier vibration.

The coefficient of variation of the maximum displacement and moment
are shown in Tables 2 and 3. In making Table 2, we used white noise excita-
tion and the same uncertainty as Table 1, and the following comments may. be
made. The soft foundation has more influence on the variation of the moment
than the hard foundation. Foundation B has a larger influence on the varia-
tion of tower displacement and the other foundations have large influence
on the pier top displacement. These variations are almost the same for the
variation of inputs and are considered fairly large taking into account the
filter effect of the structures. So, the probabilistic approach is needed
not only for earthquake excitation but also for the foundation model. The
results of computations using uncertainties of the damping constant are
shown in Table 3. In making Table 3, all modes had 0.2 coefficient of
variation of damping. This table shows that the influence of variation is
about the same 1in foundations A to D, and these variation are about half of
the input damping variation, which shows that the probabilistic approach is
also needed for damping, because of the large damping variation. These
tables show that the variation of dynamic response due to the change of
elastic modulus of foundation is larger than for the damping constant if
they have same variation.

The results of various earthquake excitations are shown in Figs. 3 and
4. These computations were performed using white noise, filtered white
noise, El1 Centro 1940 NS, Taft 1952 N21E, and using the same uncertainties
as Table 1. There is some difference in the dynamic response depending on
the earthquake excitation used. This can be explained by resonance between
the structure and the excitation. The first natural frequency of the
system exists in the range lower than 5 rad/sec, as shown in Table 1. In
this range, the spectrum of El Centro 1940 NS has a large peak, but the
spectrum of Taft 1952 N21E has no such peak, and very small spectrum value.
Other spectra are between these two spectra. The effect of uncertainties on
the dynamic response are closely related to the predominant frequency range
of the power spectrum density of the earthquake.

Results of Optimum Design

As an optimum design example, for the system shown in Fig. 1, the com-
putation results are shown in Tables 4, 5 and 6. These computations were
performed using the design model with three design variables, which were
the moment of inertia of the upper and lower parts of the tower (I), and
the longitudinal width of the pier (b,). Other variables of the system were

defined by approximation conceptss)G). In making Tables 4, 5 and 6, the
following data was used: expected maximum acceleration=180 gal, barrier of
pier top displacement=0.10 m, barrier stress of steel=46000 ton/m2, cost
ratio=0.2, allowable failure probability=0.001 and Table 4, 5 and 6 used
filtered white noise, El Centro 1940 NS and Taft 1952 N21E for the power
spectrum density of earthquake excitation, respectively.

From these tables, the following conclusions may be made. When the

elastic modulus of the foundation, Es, is small, the optimum design of the
.system is determined solely by the failure probability constraint of the

725



pier top displacement, for all earthquake excitation models. When the value
of Es is large, it tends to be determined by overturning of the pier and
buckling of the tower, at places the failure probability of tower shaft
stress, and the pier width tends to decrease. This shows that the pier
width is closely related to Es. The generalized cost is greatly affected by
the modulus of elasticity of the foundation. Thus, the investigation of the
foundation is very important. When Es is large, the effect of earthquake
response tends to decrease, and stiffness of the tower becomes uniform
along the height of the tower. Such probabilistic results are almost the

same as from the deterministic approachs). But. the probabilistic results
obtained using various earthquake excitations have a fairly large differ-
ence, especially in the range of small Es. The reason can be explained by
resonance between the system and the earthquake excitation. So, the pre-
dominant frequency range of the power spectrum density of the earthquake
has a large influence on the optimization results.

CONCLUSION

In this paper, uncertainties in both structural modeling and earthqu-
ake excitation in aseismic design of tower and pier systems of long span
suspension bridges were studied by using linear statistical approximation
and optimization techniques. This study shows that the effect of structur-
al uncertainties on the earthquake response ‘are fairly large. So, the
probabilistic approach is needed not only for earthquake excitation but
also for structural uncertainties. The optimization results show that
optimum aseismic design of the system is greatly affected by the modulus
of elasticity of the foundation. Thus, the investigation of the foundation
is very important. The predominant frequency range of the power spectrum
density of the earthquake has a large influence both on the effect of
uncertainties on the dynamic response and on the optimization results.
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Table 1 Variation of Natural Frequencies
" FOUNDATION A FOUNDATION B
Elw] olw] Ccoviw] Efw] ofw] coviw]
2.727  0.2496  0.9151x107} 3.490 0.1431  0.4102x107!
w1 2,713 0.2551  0.9404x10~} 3.449  0.1739  0.5041x107}
4.080 0.0477 0.1168x107! 4.544  0.2746  0.6042x107!
W2 4.089  0.0475  0.1162x10 ! 4.577  0.2742  0.5900x10 7
12.64  0.0009  0.6860x107" 12.65 0.0020 0.1545x107%
w3 12.64  0.1349  0.1067x107! 12.65 0.1263  0.,9988x1072
FOUNDATION C FOUNDATION D
Efw] olw] cov{w] E{w] olw] Cov [w]
3.771  0.0133  0.3523x107% 3.807 0.0029 0.7708x107%
w1 3.768  0.0157 0.4166x1072 3.807 0.0031 0.8071x10"°
7.306  0.7024  0.9614x107} 11.97 0.6872  0.5741x107*
w2 7.294  0.7266  0.9962x10 ! 11.73  0.7197  0.6136x1077
12.67 0.0103  0.8091x107° 13.29  0.6656  0.5009x107%
Ws 12.67 0.1181  0.9320x10 "2 13.50 0.6936  0.5138x107!
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Table 2 Coefficient of Variation of Maximum Response [COV(Es)=0.2]
FOUNDATION A B C D
POINT 6 0.081 0.115 0.105 0.051
DI EMENT
SPLAC POINT 1 0.147 0.089 0.133 0.612
POINT 6 0.145 0.109 0.093 0.116
MOMENT POINT 1 0.191 0.089 0.080 0.024
Table 3 Coefficient of Variation of Maximum Response [COV(B)=0.2]
FOUNDATION A B c . D
POINT 6 0.076 0.085 0.099 0.092
D
TSPLACEMENT  porNt 1 0.091  0.083 0.097 0.063
POINT 6 0.078 0.088 0.090 0.076
MOMENT, POINT 1 0.085  0.090 0.085  0.085
Table 4 Optimum Results Using Filtered White Noise
4 Constraints
4 Es 2 I @) bz(m) w Pier Tower
(10 ton/m”) | Upper | Lower (1) (2) [Top (3) Base [(4)
10 27.06 | 40.18 | 45.20 | 60620 | X
30 7.26 | 11.66 | 23.07 | 31690 | X
50 4.75 9.45] 16.65) 23430 | X
70 4.75| 5.53| 14.33 | 20480 X X | X
150 4,75 | 6.73| 14.33| 20510 X, X | X
300 4.75| 4.75| 14.33 | 20460 X X

(1): Failure probability of the pier top displacement
(3): Failure probability of the tower shaft stress

(4): Buckling

(2): Overturning

Table 5 Optimum Results Using El Centro 1940 NS
4 Constraints
4 Es 2 L @) bZ(m) w Piex Tower
(10 ton/m" ) | Upper | Lower (1) (2) |Top (3) Base | (4)
10 11.17 | 19.30 | 58.77 | 75860 | X
30 13.81 ] 38.08 | 29.93] 41090 | X
50 9.57 | 42.85 | 21.60} 30570 | X
70 9.32 1 17.73 | 17.91} 25730 | X
150 4.75 4.75| 20.42 | 27890 XX
300 4.75 4.75 | 14.33 | 20460 X X

(1): Failure probability of the pier top displacement
(2): Failure probability of the tower shaft stress

(4) : Buckling

(2): Overturning

Table 6 Optimum Results Using Taft 1952 N21E
4 Constraints
4 Es 2 I @) bZ(m) v Pier Tower
(10 ton/m") | Upper | Lower (1) (2) [Top (3) Base | (&)
10 6.46 | 13.14 | 36.37| 47860 | X
30 4.86 | 15.97 | 18.66| 26040 | X
50 4.76 7.61| 14.35| 20570 | X X X
70 4.75 4.75 | 14,33] 20460 X X
150 4,75 4.75| 14.33| 20460 X X
300 4.75 4.75 | 14.33] 20460 X X

(1): Failure probability
(3): Failure probability

of the pier top displacement
of the tower shaft stress
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(4): Buckling

(2): Overturning



