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SUMMARY

A probabilistic method for evaluating the earthquake response of multi-degree-of-freedom
structures using the response spectrum approach is developed. Various statistical quantities of
the response, including the root-mean-squares of the response and its time derivative and the
cumulative distribution and the mean and variance of the peak response, are directly obtained
in terms of the response spectral ordinates and the modal properties of structure. The pro-
cedure is applicable to structures with closely spaced frequencies for which the existing SRSS
method for the mean response is in gross error. For an example structure with closely spaced
frequencies, the proposed response spectrum method produces results that are in close agree-
ment with simulation results based on time-history computations.

INTRODUCTION

Earthquake induced loads on structures are stocnastic in nature. Therefore, a probabilistic
approach for the analysis of structural response to earthquakes and the assessment of safety is
essential. Random vibration techniques have successfully been used to determine the statistical
quantities of response to stochastic inputs typical of earthquake motions [1,6]. In this
approach, the input excitation is usually described through a power spectral density function.
This description, however, is not the most convenient in earthquake engineering practice.
Instead, a description of the ground motion in terms of an average response spectrum is found
to be more convenient and is commonly used in design applications and code specifications.
Based on concepts from the theory of random vibrations, Rosenblueth et al. [7] were the first
to develop a method for determining the responses of multi-degree-of-freedom (MDF) struc-
tures to earthquakes using the response spectrum approach. Their method, as well as other
methods that were subsequently developed [8,10], are limited to a determination of the mean
value of the maximum response.

In this paper, a probabilistic method for evaluating the responses of linear MDF structures
to earthquakes using the response spectrum approach is developed. Various statistical quanti-
ties of the response, including the root-mean-squares of the response and its time derivative
and the cumulative distribution and the mean and variance of the peak response, are directly
obtained in terms of the response spectrum ordinates and the modal properties of the structure.
The method includes the correlation between modal responses; thus, it is applicable to struc-
tures with closely spaced frequencies. The required expressions are all in closed form and
require little computational effort.

The development in this paper is based on the previous works of Vanmarcke [11,12] and
the author [3]. In Ref. 11, it is shown that most statistical quantities of interest for a stationary
process are obtained in terms of the first three moments of the power spectral density function.
In Ref. 12, these moments are used to determine the cumulative distribution of the first-
passage time for a Gaussian process, which is also the distribution of the peak over a specified
duration. In Ref.. 3, closed-form expressions for the first three spectral moments of the
response of MDF structures to white-noise and filtered white-noise input excitations are
derived. The significance of closely spaced modes, which result in correlated modal responses,
is included in this derivation. Through comparisons of results for the two types of inputs, the
range of applicability of the white-noise model as an approximation for wide-band inputs is also
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determined in this reference. These results will subsequently be used in developing the
response spectrum method.

RESPONSE OF MDF SYSTEMS TO STATIONARY GAUSSIAN EXCITATION
Consider an n-degree-of-freedom, viscously damped, linear system having classical modes.
Let w,, {,» i=1,2,...,n, represent its natural frequencies and damping coefficients, respectively.
Any response of such a system can be expressed in terms of its modal responses as

R(r) = ZR,(r) = Z‘P,S,-(r) (§))

where R,(1)=¥,5,(:) is the response in mode /, in which ‘¥, is the effective participation fac-
tor. a constant in terms of the modal vectors and the mass matrix, and S;(¢) is the i-th normal
coordinate representing the response of an oscillator of frequency , and damping coefficient ¢,
to the given input [1]. For a zero-mean stationary Gaussian input, F(1), described through a
one-sided power spectral density, Gr(w), the corresponding power spectral density for the sta-
tionary response is

Grlw) = TXV, ¥, G ) Hyw) H)(w) @
i

where H (w)=1/(w?—w’+2i{,0,0) is the complex frequency response function of mode i and
the asterisk denotes a complex conjugate. Using this relation, the first three moments of the
response power spectral density, as defined by Vanmarcke [111], are

Ay = f0"Gp@do = LT ¥ TN, m=0,1,2 3)
0 i
where
Xy = Re f 0"Gr(w) H (0) H (@) dw|, m=0,1,2 (4)

are the cross-spectral moments of the normal coordinates associated with modes / and j [3].
Introducing the coefficients p,, ; =X, ;/~/ A ik m» m=0,1,2, Eq. 3 can be written in terms of
uni-modal spectral moments as

m EZ‘P ‘I,/p/nl/\/ m,ii mjjl m=0,1,2 (5)

It is noted that po; and p,, are the correlation coefficients between S;(¢) and §;(t) and
between their time derivatives, $,(r) and S (¢), respectively. A similar interpretation of pry
not possible; however, the behavior of this coetﬁcxent is also similar to a correlation coeﬁcxent
Whereas the spectral moments, X, ;, are in general sensitive to the shape of the input power
spectral density, the coefficients, p,,;, remain relatively indifferent for wide-band inputs. For
the response to a white-noise input, approximate expressions for these coefficients from Ref. 3
are

2/ C,vC',-[(w,-+w,,~)2(§,-+£,/) + (0~} (gf'"{,')]

Poi = o0+ () (1) )]
2\/4—,2;[(w,+w.,~)2(§,+§,) —4(w~w;) 2/7:-]
Py = 4(w~0 )+ (0+0 ) ¢ AL ))? M
W [(@rt0)2e+0) - wi=0 €~
Py = (8)

4o~ )2+ (040 )2+ )?

A comparison of these results with the corresponding values for response to filtered white-noise
inputs has demonstrated that these expressiong can be used for responses to wide-band inputs
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typical of earthquake ground motions [3]. These expressions for p,; are plotted in Fig. 1
against the frequency ratio for selected values of damping.

In terms of the moments of the response power spectral density, X ,, the statistical quanti-
ties of response are: the root-mean-square (rms) response, oz =+/Ag; the rms of the time
derivative of the response, o ; =~/X;; the response mean zreo-crossing rate, » =~/A,/Ay/#; and
the cumulative distribution of the maximum absolute response over duration ,

R, = max|R (1)] 9

as

1—exp(—/m/28,s)
exp(s%/2)—1

in which s =r/og, 8,=8"% and 8 =+/1-A#/\gh, [11,12]. The mean and standard deviation of

the maximum response may, in general, be obtained as R, =poy and aR =qog, respectively,

where p and q are peak factors. Empirical expressions for p and ¢ that are consistent with the
distribution in Eq. 10 were obtained in Ref. 3 as

Fp (r) = [l—exp(—52/2)]exp[—vr , r>0 (10)

0.5772
= 2lw 7+ ———= 1
p =/[2lnv,7 N (11)
12 54
V2w,r 13+Qlow,1)3? " w,r>2.1
7= loss, v <21 12)

where

(1.635%45—0.38)y, < 0.69
ve=1,, 83 0.69 (13)

is an equivalent rate of statistically independent zreo crossings. These expressions are valid in
the ranges 0.1 <8 <1 and 5 < vr £1000, which are of interest in earthquake engineering. Fig.
2 shows plots of p and g versus v7 for selected values of 8. (It is noted that the distribution in
Eq. 10 and the peak factors in Egs. 11 and 12 include the effect of the dependence between
crossings of the response process and, in this respect, are superior to similar results previously
given by Davenport [2]).

DEVELOPMENT OF THE RESPONSE SPECTRUM METHOD

Let §, (w, {) represent the mean of the maximum absolute response of an oscillator of fre-
quency w and damping ¢ to a given input, F(t), over duration 7. A plot of S,(w,{) for all ®
and ¢ is defined herein as the response spectrum associated with the input F(¢) and the dura-
tion 7. It is the intention here to develop a method for approximate evaluation of the response
of an MDF structure when the input is described through its response spectrum. This develop-
ment is based on the assumption that the input is a wide-band process, i.e., that it has a
smoothly varying power spectral density over a wide range of frequencies.

From the definition of the response spectrum, it is clear that S (w,,{;) is the mean of the
absolute maximum of the ith normal coordinate, S, (7). Thus, if p; denotes the peak factor for
this process, using the relation S, (w;,{;) =p~/Ag,,;» One has

Ao = ;1753 (@,2) (14)

It is shown in Ref. 3 that for responses to a wide-band input

1
1 2

v, = —

m

}‘Z,H

}‘O,u

~ 2 @15)
mw
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(16)

! 1
] = i -] o

X0 u)‘Z if 1-¢ ™ —{ ™
These relations are exact for responses to white-noise inputs and are close approximations for
responses to earthquake-type, wide-band inputs. Using these expressions in Egs. 11 and 13, the
peak factor, p;, for the +th normal coordinate is computed in terms of the corresponding modal
frequency and damping coefficient. Substituting this factor in Eq. 14, the first moment, Aq ;, is
obtained directly in terms of the response spectrum ordinate associated with mode /. Further-
more, using Eqs. 14-16, the second and third spectral moments are also obtained in terms of

the response spectrum ordinate as
wAf1—4¢, /7
A= ——————i/—s 2w, L) a7
P

i

by
SI=[1_ Lii I""—

w,2 S2
M= —358; (w,,¢)) (18)
14
Thus, substituting Eqgs. 14, 17, and 18, together with the previously given expressions for p,, ;;,
in Eq. 5, the moments of the response power spectral density are obtained directly in terms of
the response spectrum ordinates and the modal properties of the structure. With these
moments known, the statistical quantities of response are evaluated as discribed in the preced-
ing section. In particular, if R;,=¥,S,(w,,{,) denotes the maximum response in mode /, this
development yields

1
or =X L PoRR, ’ (19)
i Pibj ’
1
©w; 2
—Lp, ;R.R,, (20)
2,2,: oy PO ]
1
=12
R =pogp = {ZZP,P, pOI/ / ] (21)
1
— 2
= ; 22
R, qog = [ZZ b, Po, / l < )

where p and q are the peak factors for the response process, R (r), and are obtained from Eqs.
11-13 usind v =-~/Ay/A¢/m and § =~/1—A#/Agh,. Another useful response quantity is the mean
response frequency, =y, which is of interest in problems of structural fatigue. Using Egs.
19 and 20,

!

X ZZ pZ ij l'rR/f 2
- O-R i p,p,
w=—= (23)
R R TR T
T3 e

Observe that this frequency is a weighted average of the modal frequencies.

It is important to note in the preceding expressions that, since S, {w, {;) by definition is
positive, the sign of R, is always the same as that of ¥,. This sign could be positive or nega-
tive, depending on the modal characteristics of the structure and on the direction of input. [t
follows, then, that the cross terms in Egs. 19-23 would have negative values when the effective
participation factors for the two modes assume opposite signs.

In many practical applications, the mean of the maximum response is all that is needed,
A simplification of Eq. 21 is, therefore, of special interest. It is first noted that the ratios p/p
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in this equation are all near unity. (This ratio is nearest to unity for the mode which has the
closest frequency to the average frequency, w, and it decreases with increasing mode number.)
This is because of the slow variation of the peak factor with the parameter v7; see Fig. 2.
Neglecting these ratios in Eq. 21, which is equivalent to assuming a constant peak factor, is
therefore a possible simplification. This yields

|

R, = [ZZpO',,R—,,R—,,} 2 (24)
i 1

Note that with this simplification, the mean response is directly given in terms of the modal
responses and the coefficients p ;, i.e., there is no need to compute the spectral moments from
Eq. 5. Also note that this expression for the mean response is independent of the duration,
except that which is implicit in the specified response spectrum. A corresponding simplification
for the other response quantities is not possible except for @, which after multiplying the

numerator and the dinominator in Eq. 23 by p, and neglecting the ratios p/p,, yields
— — 1

Zzwlw/pl‘//RnR/r 2

o= |- S (25)

ZZPO.I[RITR_/T
[

Observe that with this simplification, @ becomes the average of the modal frequencies as
‘weighted by the maximum modal responses.

Another simplification in the response expressions is possible when the structural frequen-
cies are well separated. As shown in Fig. I, the coefficients p, ,; diminish in such cases.
Therefore, all cross terms in the expressions for the response, i.e. Egs. 5 and 19-25, can be
dropped. In particular, Eq. 24 in this case reduces to

1
R, = [)Zﬁ,z.-] : (26)

This is the well known square-root-of-sum-of-squares (SRSS) rule for modal combination. It is
clear from this derivation that the SRSS rule for the mean response is only adequate for struc-
tures with well spaced frequencies. When modal frequencies are closely spaced, this rule may
lead to erroneous results and should not be used.

APPLICATION TO EARTHQUAKE LOADING

In applying the above procedure to earthquake loading, the validity of several assumptions
inherent in the derivation of the method must be examined. These assumptions are: (a) the
input is stationary; (b) the input is Gaussian; (c) the input is wide banded: and (d) the
response is stationary. Whereas earthquake-induced ground motions are inherer (dy nonstation-
ary, the strong phase of such motions is often nearly stationary. Since the peak response usu-
ally occurs during this phase, it is reasonable, at least for the purpose of a response spectrum
method, to assume a stationary process. This assumption would clearly become less accurate
for short-duration, impulsive earthquakes. The assumption of Gaussian input is acceptable on
the basis of the central limit theorem, since the earthquake ground motion is the accumulation
of a large number of randomly arriving pulses [1]. The wide-band assumption for the earth-
quake motion is acceptable based on investigations in Refs. 3 and 5. Finally, for the assump-
tion of stationary response, it is well known (e.g., Ref. 6) that the response of a not-too-lightly
damped oscillator to a wide-band input reaches stationarity in just a few cycles. Thus, this
assumption should be acceptable for structures whose fundamental periods are several times
shorter than the strong-phase duration of the ground motion. These considerations also suggest
that the duration of the strong phase of the ground motion is the appropriate value for the
parameter 7 in the response spectrum method.
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It is clear from the above discussion that the response spectrum method for earthquake
loadings will be most accurate for earthquakes with long, stationary phases of strong shaking
and for not-too-lightly damped structures whose fundamental periods are much longer than the
duration of earthquake. Through a large number of example studies, it has been found that the
procedure is quite accurate for typical structures and earthquakes (see the example below). It
has also been found in these studies that Eq. 24 for the mean response closely approximates the
maximum response for a deterministic ground motion with a non-smooth response spectrum.
Maximum errors in such applications are expected to be within 10 to 30 percent, depending on
the response frequency.

As was indicated before, several formulations for the mean of the peak response have
previously been given [7,8,10]. These are generally similar to Eq. 24 of the present formula-
tion with different expressions given for p, ;. In the method of Rosenblueth et al. [7], which is
the most widely known, this coefficient is given as a function of the modal frequencies and
damping ratios as well as the duration of input. Unfortunately, no specific definition of the
duration (i.e., total duration or strong-phase duration) was given in their development. This
ambiguity remains to be a shortcoming of their formulation. (Note that in the present formula-
tion pg,, is independent of duration.) In the methods of Refs. 8 and 10, no closed-form expres-
sions for this coefficient were given. These methods require much more computational effort
and, therefore, are less desirable.

EXAMPLE APPLICATION

As an example application of the proposed procedure, the responses of a S-story building
structure to a set of 20 simulated ground motions are studied. The building has uniform floor
masses and story stiffnesses with the typical floor plan and properties as shown in Fig. 3. It is
subjected to ground motions in the x direction only; however, because of asymmetry about the
x axis, the center of mass at each floor has a rotational as well as a translational degree of free-
dom. As a consequence of this, the structure has closely spaced frequencies, as shown in Fig.
3. The ground motions were simulated using a computer program by Ruiz et al. [9]. These
were generated as samples of filtered, Gaussian shot noise with a Kanai-Tajimi [5] power spec-
tral density. An intensity function similar to that of a type-B earthquake, as defined by Jen-
nings et al. [4], was used for this purpose. It includes a stationary strong-motion phase of 11
seconds and is scaled to produce a mean peak ground acceleration of 0.5¢. A sample of the
simulated ground motions is illustrated in Fig. 4.

Using numerical integration, the response spectrum associated with each individual
ground motion was computed. These were averaged to obtain the mean spectra shown in Fig.
5. These spectra were used with the proposed method to compute the various responses of the
structure. To examine these results, time-history analyses were made of the building responses
to each indinvidual ground motion. Samples of such results were used to compute simulated
values of the means and standard deviations of peak responses. Table 1 summarizes these
results for several selected responses of the building. Numbers inside parenthesis in this table
denote percent errors relative to the simulated values. As can be observed, the response spec-
trum method for the mean (Egs. 21 or 24) and the standard deviation (Eq. 22) of peak
responses closely predicts the simulated values. For the mean response, Eq. 24 appears 1o give
results nearly as good as Eq. 21. However, Eq. 26, which is equivalent 10 the SRSS method, is
in gross error. This is clearly due to the closeness of frequencies for the structure under con-
sideration.
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Tablc 1. Summary of Results for Example Structure

R D .. RT TR
esponse Description - -

P P simul. Eq. 21 Eq. 24 Eq. 26 simul. Eq. 22
Roof displ., ft. 0264 | 0261 - (1) | 0256 (=9) | 0196 (=26).] 0.052 | 0.048 (-8)
Roof rot.x102, rad. 0231 | 0245 (+6) | 0263 (+14) | 0.536 (+132)] 0.044 | 0.044 ~ (+1)
Roof accel., g. 1430 | 1416 (=1) } 1387 (=3} | 1.044 (~27) | 0.278 | 0.250 (—10)
Roof ang. accel., rad/sec?. | 0402 | 0430 (+7) | 0.446 (+11) | 0929 (+131}| 0.068 | 0.074 (+9)
Base shear, Kip. 1848 | 1840  (—0) | 1830  (=1) | 1386 (~25) | 352 318 (~10)
Base torque, kip-ft. s454 |,5781  (+6) | 6163  (+13) | 12599 (+13D)| 1116 | 1037  (=6)
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Fig. 2. Peak Factors for Statienary Gaussian Process

Modal Properties

Mode | Freq., cps | Damp. ratio
1 2.00 0.05
2 2.11 0.05
3 5.84 0.05
4 6.17 0.05
5 9.20 0.05
6 9.72 0.05
7 11.80 0.05
8 12.50 0.05
9 13.50 0.05

10 14.20 0.05

roperties of Example Structure

Fig. 4. Sample of Simulated Ground Motion
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