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Summary Wide-flange steel beam~columns are tested under constant verti—
cal and two-dimensional monotonic or cyclic horizontal loads. Experimental
behavior is investigated and compared with results of elasto-plastic and
rigid-plastic analyses. It is shown that results of elasto-plastic analy-
sis agree with experimental values nearly up to the maximum load. The con-
ventional strength formula is shown to be too conservative.

INTRODUCTION

In conjunction with the seismic design, a number of investigations
have been performed to make clear the cyclic behavior of structural members
and frames subjected to constant vertical and alternating horizontal loads.
Most of them are limited to the investigation on the in-plane behavior of
structures. However, the real behavior of structures under earthquake exci-
tation is presumably affected by the horizontal displacements in two direc-~
tions and torsional deformation. Few researches have been done in this re~
gard. It is needed to investigate the three-dimensional inelastic behavior,
and to grasp new problems which do not appear in the plane frames. The pa-
per presents the results of experimental and theoretical studies on the be-
havior of wide-flange steel beam-columns under constant vertical and two-
dimensional monotonic or alternating horizontal loads.

TEST

Test Specimen and Loading Apparatus Test specimen is a cantilever
column of a rolled H-shaped cross section H-100x100x6x8 as shown in Fig.l.
The material is mild steel(SS41, Japanese Industrial Standards), having
average yield stress equal to 2.87t/cm2, and average ultimate strength
equal to 4.27t/cm?, both obtained from tensile tests of 3 pieces.

Loading apparatus shown in Fig.2 is designed to satisfy the boundary
conditions that the following displacements and rotations at the top of the
specimen must be free; relative sway displacements in two directions, flexu-
ral rotation in two directions and torsional rotation. First, constant ver-
tical load P is applied on the specimen @ by an Amsler type testing machine
C), and thus the top of the specimen is not allowed to move horizontally.
Relative horizontal sway due to the application of horizontal load H by a
double acting hydraulic jack(:)actually occurs at the bottom of the speci-
men, with the movement of a loading frame @), which is allowed by two-direc—
tional rollers ®and ® . Because of rollers @, the original position and
direction of the hydraulic jack are kept unchanged, regardless of the move-
ment of the loading frame. Three-directional rotation at the top of the
specimen becomes free by a two-directional hinge ® and a radial bearing@ .
both built in a loading plate @@ . Torsional rotation of the specimen is
not restricted by the testing machine because of a thrust bearing .
Supporting frame @2 is composed of straight bars with universal joints at
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ends and couplers which connect bars without friction in the longitudinal
direction. This supporting frame is connected to the loading plate @) and
the loading frame @), and has such a mechanism that the loading plate is
kept horizontally, but can move downward freely following the shortening of
the specimen.

Test Program Tests are performed under the combination of two parame-
ters; vertical load ratio n=P/Py(=O.1 or 0.3) and the direction of the hor-
izontal load & (=0°, 30°, 60°, or 90°), where Py is the yield load. The
loading program employed for the horizontal load is as follows: Specimens
in Series I are subjected to basically monotonic horizontal load, one cycle
of reversed loading applied at the large amplitude of plastic deflection.
Specimens in Series II are tested under cyclic loading, where the amplitude
of displacement U (see Fig.l) is increased by 1% of the column height £ in
a step-wise manner every four cycles of loading completed, until the speci-
men becomes unable to sustain the vertical load.

THEORETICAL ANALYSIS

Two types of theoretical analysis are performed to obtain the load-
deflection curves of cantilever beam-columns under monotonic biaxial bend-
ing; elasto-plastic analysis taking the spread of plastic zome into account,
and rigid-plastic analysis based on a plastic hinge method.

Elasto~Plastic Analysis Governing differential equations of equilibrium
of elasto-plastic beam-columns under biaxial bending can be written as
follows[1]:

N'=0
(MY+MX¢) ' -(Nu') .=0 (1)
(Mx-My®) "' +(Nv') '=0

Mw” —TS'—(K¢') '+qu”+MyV"=0

where N denotes axial force, My and My bending moments about x- and y-axes,
respectively, Tg torsional moment due to St.Venant's torsion, My bi-moment,
K stress resultant due to inclination of fibers of the twisted column, u
and v displacements of centroid in x- and y-directions, respectively, ¢
angle of twist, and prime denotes the differentiation with respect to z
taken along the longitudinal axis of the beam-column.

Equation (1) is solved by the numerical integration under the prescrib-
ed boundary conditions, based on the bi-linear stress-strain relation shown
in Fig.3. 1In the analysis the following assumptions are made: 1) Beam-
column is free from initial imperfections, such as residual stress and
crookedness. 2) Effects of strain reversal and shear deformation are negli-
gible. 3) Yielding is governed by normal stresses only. 4) Constant normal
stress is distributed over a subdivided segment of the cross section. 5)
Warping function is unchanged, regardless of the spread of the plastic zome.
6) St.Venant's torsion constant is reduced in proportion to the ratio of the
area remaining elastic to the total area of the cross section.

As it can be seen, the stress resultants in Eq.(l) depend on the strain
distribution which must satisfy the strain-displacement relations, and thus
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the numerical computation is a non-linear, iterative task.

Rigid-Plastic Amalysis In addition to the elasto-plastic amalysis, rig-
id plastic analysis is performed to investigate the state of collapse mech-
anism, by assuming a generalized plastic hinge forming at the base of the
beam-column. The load-deflection relation is numerically obtained from the
plastic condition and associated flow rule, the former being formulated by
Heymann[2] for a wide-flange section of rigid-perfectly plastic material.

RESULTS AND DISCUSSIONS

Monotonic Behavior Figures 4 and 5 show load-deflection relations under
the monotonic loading. In Fig.4, experimental results are shown by solid
lines with circles, and results of the elasto-plastic analysis and the rig-
id-plastic mechanism curves are shown by solid and dash-dotted lines, re-
spectively. Definitions of the displacements u and v are given in Fig.l.

Figures 4(c) and 4(d) show the results under n equal to 0.1, and in
the rest of Fig.4, the value of n is kept constant to be 0.3 and the value
of 8 changes from 0° to 90°. Note that Figs.4(a) and 4(b) are for the uni~
axial bending cases. All experimental curves are compared in Fig.5. It is
generally concluded from the experimental results that the maximum load
carrying capacity decreases as the value of n or 8 becomes large. In all
cases, H-u curve becomes approximately linear after the maximum load attain-
ed, with the great increase in the displacement u which corresponds to the
weak-axis bending. Similar behavior is observed in H-v curves for the uni-
axial bending and for the biaxial bending with n equal to 0.1. However, in
H-v curves of specimens subjected to biaxial bending with n equal to 0.3,
it seemes that there exists a limiting value which the displacement v cannot
exceed. This phenomenon clearly appears on the mechanism curves. In fact,
the specimen becomes unable to sustain the vertical load during the test, in
the vicinity'of the limiting point. As to the theoretical results, experi-
mental behavior can be predicted to some degree by the elasto-plastic analy-
sis nearly up to the maximum load, and the mechanism curves estimate the
general tendency after the maxmum load attained.

Strain distributions at the states of the maximum load and the unload-
ing are shown in Fig.6, where dash-dotted line drawn connecting zero
strain points of two flanges approximates the neutral axis. Among speci-
mens subjected to biaxial bending, the neutral axis hardly changes the po-
sition or rotates between two loading states in case of n equal to 0.1,
while it moves and rotates in specimens of n equal to 0.3. Particularly,
in case of 6 equal to 60° the neutral axis almost coincides with the y-axis
at the state of unloading, and it seems as if the specimen is subjected to
pure weak-axis bending. This is the reason why H-v curve shows a limit in
the value of v mentioned above.

Cyclic Behavior Cyclic load-deflection curves of Series II are shown by
solid lines in Fig.7, together with the results of Series I by solid lines
with circles, where definitions of U and V are given in Fig.l. The effects
of the vertical load ratio n and the angle 6 are quite apparent. As to the
cyclic behavior under the biaxial bending, H-V loops of the specimen of n

equal to 0.1 are stable and symmetric during the test. On the other hand,

in specimens of n equal to 0.3, H-V loops are approximately symmetric about
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the origin when the displacement amplitude of U/% is 1%, but they start to
drift away from the origin in one direction, when the amplitude of TW/% be-
comes 2%. When the amplitude of U/ is increased to 3%, the displacement ¥
increased rapidly in the first stage of loading, and the vertical load could
not be sustained. Similar characteristics are observed in case of 6 equal to
60°, but they seem to appear rather slowly, compared with the case of 8
equal to 30°. In the specimen of 6 equal to 0°, the situation becomes quite
different, the displacement V keeping on increasing after the combined local
and lateral bucklings occur. It may be said that H-V loops become more sta-
ble as the angle € becomes large.

Relations between the number of loading cycle and the strain at the
centroid of the cross section are shown in Fig.8. It seems that H-V loops
start to drift away when the strains at the centroid increase remarkably.

Strength formula Figure 9 and Table 1 show the experimental and theoret-
ical results of the maximum horizontal loads compared with the values com-
puted by a strength formula given in Ref.[3],

CyMy

7?— + Cxﬁx + ~ =1.0 (2)
cr _ N g
(1 Nex)Mcr (L Ney)Mpy

in which N denotes axial load, Ner critical load, Ne Euler buckling load, M
applied moment, Mcr lateral buckling moment, Mp full plastic moment, C fac-
tor computed in relation to moment gradient, and subscripts x and y indicate
quantities computed about x- and y-axes, respectively. The values of Ner
and Mcr are computed from the design formula [3], taking the buckling length
equal to 2%. The ratio of the experimental maximum load to the stregth com-
puted by the formula above ranges from 1.5 to 2.2. It seems in Table 1 that
the conservative discrepancy in the case of bi-axial bending is more pro-
nounced with the increase in the vertical load.

CONCLUSIONS

(1) For beam-columns subjected to monotonic biaxial bending, it seemes
that the displacement v is limited to a certain value, different from in
case of uniaxial bending. This phenomenon also appears on the mechanism
curves, which estimate the general tendency in the experimental behavior.
To some degree, the results of the elasto-plastic analysis agree with experi-
mental values up to the maximum load.

(2) As to the cyclic behavior, the effect of the vertical load ratio
n is quite apparent. In specimens of n equal to 0.3. H-V loops are approxi-
mately symmetric about the origin in the region where the displacement ampli-
tude of U/2 is small, and they start to drift away from the original point
in one direction, when it becomes 2%. There is no drift observed during the
test in the specimen of n equal to 0.1. Such behavior must be taken into
consideration when the dynamic analysis of space frames is performed.

(3) The conventional strength formula used in the plastic design of
steel structures is conservative, and needed to be improved.
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Table 1 Comparison of Maximum Loads (Unit:ton)

0.1 30°12.28|2.28(1.46|1.00]1.56{1.56

TTi60°] - 11.72/11.18] - ]1.46] -
0° 3.04/2.81]/2.00/1.08]1.41]1.52
15°(2.61/2.33/1.24]{1.12/1.88]1.99
30°]2.09/1.85/0.94({1.13]/1.96]2.20

0.3[45°) - 11.57/{0.81} -~ ]1.93]| -
60°]1.4311.39|0.75/1.03[1.85[1.89

75°] - 11.29(0.75| - 11.72| -
90°)1.23}1.16/0.80;1.06/1.45|1,53

0.6 30°) - ]1.09/0.30{ - 13.60}f -

“T]60° - 10.72{0.23) - [3.11| -

(1) Experiment,

(2) Elasto-Plastic Analysis,and

(3) Strength Formula



