TENSION LAP SPLICES UNDER SEVERE LOAD REVERSALS
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SUMMARY

This paper describes a test program to develop seismic design criteria
for lap splices of reinforcing bars. Specifically, performance of tension
lap splices under severe load reversals is being investigated. Behavior
of eight specimens is described. Variables include load history, amount
and configuration of lapped reinforcement, and amount of transverse hoop
reinforcement around the lapped bars.

Tests were performed on reinforced concrete column elements under re-
versing axial loads. Columns had cross-sectional dimensions of 12x12 in.
(305 x 305 mm). Iongitudinal reinforcement consisted of either four No. 8
bars or eight No. 6 bars.

Results indicate that distribution of transverse hoop reinforcement
significantly influences performance. Offset reinforcing bars also have a
significant effect. Specimens with Class C lap splices and special trans-
verse hoop reinforcement performed well under monotonic and reversing
loads.

INTRODUCTION

As part of an investigation of reinforced concrete structural walls
used as lateral bracing in earthquake-resistant buildings, lap splices of
reinforcing bars were evaluated. The specific problem considered is the
use of tension lap splices in regions where main reinforcement yields
under severe stress reversals. This can occur, for example, at the base
of structural walls where splices of vertical reinforcing bars are often
unavoidable. During severe earthquakes, overturning forces can induce
inelastic stress reversals in these bars. The designer has no guidance on
effectiveness of splices in this critical region.

OBJECTIVES AND SCOPE

Objectives of this investigation were:

1. To determine effects of reversing loads on behavior of tension
lap splices.

2. To develop design criteria for tension lap splices in earthquake
resistant structures.

To achieve these objectives, a series of reversing load tests on spec-
imens containing lap splices were performed. Variables included:

1. Load History. Histories corresponding to monotonic and severe
reversing loads were applied.
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2. Longitudinal Reinforcement. Configurations using either four No. 8
bars or eight No. 6 bars were tested.

3. Transverse Reinforcement. Amount of transverse reinforcement ranged
from that required for ordinary column ties to that required for
confinement hoops.

OUTLINE OF TEST PROGRAM

Right specimens listed in Table 1 were tested. Four were subjected to
monotonic loading and four were subjected to severe load reversals.

Test Specimens

Tests were made on I-shaped specimens as shown in Pigs. 1 and 2. The
splice test region was at midlength of the column portion of the speci-
men. Specimens were instrumented to measure applied loads, axial elonga-
tions, and steel strains.

As shown in Pig. 2, cross-sectional dimensions at the splice location
were 12x12 in. (305 x 305 mm). Length of the test section was 96 in.
(2.44 m). Amount of longitudinal reinforcement within the splice length
was 4.4% for specimens with No. 8 bars and 4.9% for specimens with No. 6
bars. Reinforcement conformed to ASTM Designation: A615, Grade 60. Con-
crete for all specimens had a design strength of 3000 psi. Measured mate-
rial properties are given in Tables 2 and 3.

Specimen Design

.8plices were designed as Class C tension laps according to the 1977
ACI Building Code (1). This resulted in a 33-in. (0.84 m) lap for speci-
mens with No. 6 bars and a 60-in. (1.52 m) lap for specimens with No. 8
bars.

Load Test:
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Transverse reinforcement in Specimens S6-1, S6-2, S8-1, and S8-2 con-
sisted of hoops spaced 2 in. (51 mm) on centers. Rectangular hoops were
made from No. 3 bars. Volumetric hoop reinforcement ratios in these
specimens met requirements of the 1976 Uniform Building Code (2). Hoops
provided 70% of reinforcement required by the 1977 ACI Building Code (1).

To investigate effects of transverse reinforcement, four specimens
were built with fewer hoops. 1In Specimens S6-3, Sé-4, and S8-4, No. 3
hoops were spaced at 4 in. (102 mm) on centers. In specimen S8-3, No. 3
hoops were spaced at 12 in. (305 mm) on centers, which is the maximum
spacing permitted for column ties (1).

As is common practice, corner longitudinal bars had offsets at the
start of the lap. This is shown in Fig. 2. Slope of the inclined portion
of the bars with the longitudinal axis of the colummn was 1:6. Interior
bars were not offset.

Loading

Two load histories were used. In tensile monotonic loading tests,
specimens were initially loaded in increasing force increments. Subse-
quent to yielding, loading was controlled by increments of axial elonga~
tion. Elongation was increased in equal increments until the specimen was
destroyed. In reversing loading tests, specimens were subjected to six
fully reversed cycles. In tension, three cycles at yield were alternated
with three cycles at 1.25 times yield. In compression, six cycles at a
peak load of approximately 200 kips (890 kN) were applied. After six
cycles, specimens were subjected to slowly increased tensile force until
they were destroyed.

OBSERVED BEHAVIOR

Capacity of each specimen was limited either by bar fracture or pull-
out of spliced bars. Bar fracture occurred at the offset. Pullout of
spliced bars was associated with longitudinal splitting of the concrete.
A general discussion of effects of significant variables is presented in
the following sections. Test results are summarized in Table 4.

Effects of Load History

One of the main objectives of this experimental investigation was to
determine effects of severe load reversals on performance of tension lap
splices. Performance of specimens subjected to reversing loads was simi-
lar to that for specimens subjected to monotonic tensile loading.

Figure 3 shows load versus total elongation of nominally identical
specimens subjected to different loading histories. Hysteresis loops,
shown by solid lines, correspond to specimens subjected to reversing loads.
Broken lines correspond to companion monotonic load tests. Results in
Fig. 3 and Table 4 show that strength was not affected by load history.
However, final elongation of specimens subjected to monotonic loading was
slightly larger than for companion specimens subjected to load reversals.

Effects of Longitudinal Reinforcement
Amount and distribution of lapped reinforcement were important factors.
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As expected, the larger the lapped bars relative to the size of the
cross~section, the larger the bursting forces in the concrete, particular-
ly at the offset end.

Main differences between S8 Specimens and S6 Specimens were bar size,
presence of interior bars in Sé Specimens, and relative size of the offset
with respect to the cross-section. Figure 2 shows reinforcement in S8 and
S6 Specimens.

In two S8 Specimens bar fracture occurred at the offset. In Specimen
$8-3, which had wvery light transverse reinforcement, longitudinal rein-
forcement slipped. Extent of bursting at the offset was more severe in S8
Specimens than in S6 Specimens.

Except for S6-2, capacity of S6 Specimens was limited by slip of in-
terior bars. Splitting cracks appeared along interior bars near the off-
set as first yield of longitudinal reinforcement occurred. At very high
inelastic tensile loads, longitudinal splitting propagated from both end
regions into the splice length. As loads approached ultimate, interior
spliced bars slipped, and load was transferred to corner bars causing them
to fracture. Longitudinal splitting was not as well contained for inter-
ior bars as it was for corner bars. This is attributed to the fact that
corner bars were confined in two directions by transverse hoops.

Effects of Transverse Reinforcement

Amount and distribution of transverse reinforcement are critical to
deformation capacity, strength and behavior. Transverse reinforcement
controls longitudinal splitting, bar slip, and yield penetration along the
splice. In particular, longitudinal lapped bars located within corners of
hoops have less tendency to slip. Intensity of strains at end regions of
the splice indicated that location of transverse reinforcement is a criti-
cal factor. From measurements of strains in transverse reinforcement, it
was apparent that hoops at the ends of the splice were more effective than
interior hoops.

For the amounts of transverse reinforcement used in the tests, reduc-
tion in the number of uniformly distributed hoops caused a relatively
small reduction in load carrying capacity of the tension lap splice. Com-
parison of Specimens S6-2 and S6-3 in Table 4 shows that a 50% reduction
in transverse reinforcement caused a reduction of only 15% in strength of
the splice. Similar effects were observed in monotonically loaded Speci-
mens S6-1 and S6-4.

Camparison of Specimens S8-1 and S8-3 shows that an 83% reduction in
transverse reinforcement caused a reduction of only 15% in strength for
monotonically loaded Class C tension laps. Similar comparisons for Speci-
mens S8-2 and S8-4 indicate a 20% reduction for a 50% reduction in hoops.

Transverse reinforcement had a significant effect on deformation capa-
city of the specimens. Figure 4a shows applied axial load versus total
elongation envelopes for Specimens S6-2 and S6-3. As expected, Specimen
S6-2, containing more hoops, attained a higher ductility than Specimen
S6-3. A similar trend was observed for Specimens S6-1 and S6-4, as shown
in Fig. 4b, and Specimens S8-2, and S8-4, as shown in Fiq. 4c.
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CONCLUSIONS

The following observations are based on results of eight tests:

1.

Specimens designed as Class C lap splices with transverse rein-
forcement meeting seismic design requirements of the 1976 Uniform
Building Code(2) performed well under monotonic and reversing
loads. Strength of these specimens varied from 92% to 94% of the
average tensile strength of the longitudinal reinforcement.
Measured ultimate loads ranged from 169% to 174% of the design
yield.

Strength of specimens was not affected significantly by load
history.

Bll specimens experienced large post-yield elongations. Speci-
mens subjected to monotonic loading exhibited slightly larger
axial deformation capacity than those subjected to load reversals.
Use of offset bars at the end of the lap caused severe local dis—
tress. The extent of damage was larger in specimens with large
bars. Moreover, this detail may lead to low cycle fatigue under
load reversals,

In an eight bar arrangement with 100% of the bars spliced, slip
of interior bars controlled capacity. Splitting cracks first

appeared along interior bars at the offset and then propagated

from both end regions into the splice. Cracks were first observed
as the load approached yield. As the tensile load approached
ultimate, interior spliced bars slipped and transferred load to
corner bars. Longitudinal splitting was not as well contained
for interior bars as it was for corner bars.

Transverse reinforcement was effective in controlling longitudinal
splitting and bar slip as well as yield penetration along the
spliced bars.

Amount and distribution of transverse reinforcement have a criti-
cal affect on behavior of lap splices. An insufficient amount of
hoop reinforcement at ends of a splice can lead to reduction in
deformation capacity and strength, and to severe damage within
the splice region. From measurements of strains in transverse
reinforcement, it is evident that hoops at the ends of a splice
are more effective than interior hoops in resisting splitting and
bursting of concrete.

Transverse hoops must be in contact with longitudinal bars to be
effective.
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