SLOSHING OF LIQUIDS IN RIGID ANNULAR CYLINDRICAL AND
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SUMMARY

Sloshing respomse and impulsive hydrodynamic pressures in rigid
axisymmetric tanks due to horizontal ground motions are predicted by
theoretical solutions based on series and finite element analysis.
Results are compared with experimental data from model tests conducted on
a 20 ft x 20 ft earthquake simulator.

INTRODUCTION

The general problem of sloshing of liquid in containers due to
dynamic excitation is ome that has received counsiderable attention in the
literature, and selected references are given [1,2,3,4]. This paper
deals with sloshing in annular cylindrical and torus tanks due to hori-
zontal seismic ground motions. Tanks of this type are used as pressure-
suppression pools in Boiling Water Nuclear Reactors and have the
following typical overall dimensioas: annular tank - 120 ft. OD,

80 ft. 1D, water depth - 20 ft.; torus tank - 140 ft. OD, 80 ft. 1D,
water depth - 15 ft.

Sloshing could lead to the danger of superheated steam escaping if,
under dynamic conditions, the water level was to drop below Section C-C
on the Mark IIL Suppression Pool of Fig. 1. Hence, it is important to be
able to predict maximum water surface displacements for any prescribed
seismic ground motion.

This paper presents the results of both experimental and analytical
studies on the sloshing of water in both types of tanks subjected to
arbitrary ground motions. Tests were done on model tanks on a shaking
table. Two analytical procedures were developed; one based on a series
solution and the other on the finite element method.

ANALYSIS

Assumptions: The analysis is based on three assumptions:

(1) displacements are small and thus linear theory is applicable;
(2) the tank is assumed to be rigid (the heavy structures used for
suppression pools makes this a realistic assumption and even in more
flexible tanks the assumption may still be valid gs the primary
sloshing response is a low frequency phenomenon); (3) water is
assumed to be an incompressible and nonviscous fluid. Thus the
flow remains irrotational.

I Senior Engineer, Bechtel Corporation, San Francisco, California.
II  professor of Civil Engineering, University of Califormia,
Berkeley, California.
III Department Head, Engineering Sciences Department, Lawrence
Berkeley Laboratory, University of California, Berkeley.

63



The first solution (series solution) which involves Bessel functions
is applicable to annular tanks. The second solution, based on the
finite element method is applicable to all axisymmetric tanks. The
velocity potential ¢ is taken as the primary variable and the sloshing
displacements and impulsive pressures are derived from it. The
equations of motion and both solutions are briefly described as follows:

Series Solution for Annular Tanks: In the annular tank of Fig. 2, as
the flow is assumed to be Irrotational there exists a velocity potential
¢ that must satisfy the Laplace equation,

2 2 2
93¢ ,13 1 34,39 (1)
3r2 T or r? 962 5-27

Let a and b be the outer and inner radii of the annular tank and h
be the depth of water, then the following boundary condltlons must be
satisfied:

Bk =x cosb , -Ei)l = x cosf , 2 =0 (2-4)
or | _ Br] . 9z | _
r=a r=b z=-h

in which % = dx/dt = tank wall velocity; and t = time. Also, the
linearized free-surface boundary conditions is [5]

2
3_¢_+g_@ =0 at z=0 (5)
3t2 oz
in which g = the acceleration of gravity. The solution to Eq. 1 subject
to the above boundary conditions and at rest initial conditions is

coshg < %) Cl<£n —:-)

¢ = cosb tx—aZA & Tn(t) (6)
w cosh (&n -;)
in which
t t
Tn<t) = sinwnt/ X cosw TdT - cosmnt/ X sinwnrdr (7)
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and £, are the roots-of the equation
] [l [ 1 ) 0 (10)
I )Y, (Re ) - 3 (RE DY (E ) =

with K = b/a. The mode shapes are given by Eq. 8 and the frequencies
W, are given by:

- E) (11)

Y Entanh (En a ?

In Eq. 8, J; and Y] are Bessel functions of the first and second kind
and primes indicate their derivatives. Eq. 6 is the gen}eral expression
for the velocity potential in an annular—circular tank. Once the
-expression for velocity potential is known, the surface displacements
8(r,8,0,t) and the impulsive hydrodynamic pressures p(r,8,Z,t) anywhere
in the fluid are derived from ¢ and given by the following expressions.

cosf = COShEn (_z * _2_) Cl (En —:-)
8(r,8,0,t) = aiara ¥ - a E A -
=0 cosh (En -a->

t t
gt + si ..
(coswnt / x cosw tdt s:.nmnt/ x sinw, T d"c)
0 0

(12)
it coshg (-z- + -t-‘.) c,g X
. a a/ l°n a
p(r,8,z,t) = —pcosd | rk ~ a E Al ©
cosh <€ -—)
n=0 na
t t A
(cosm t/ X cosw T dt + sinw t:/ X sinw Td’l.‘) (13)
n n n n
0 . 0

Finite Element Analysis

Figure 4 shows a rigid wall tank of arbitrary shape filled with a
liquid and whose free surface area is B2. Bl represents the surface area
of liquid in contact with the solid boundary of the container. V is the
volume of the liquid and ¢ is the surface water displacement. The
velocity potential ¢ which must satisfy Laplace equation is written in
rectangular coordinates as:

s L, o |
32°

3x? 3y’ 14)

If v,(t) = velocity of the tank wall along its outward mormal to the
boundary at any point, then:
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3% = vy(t)  on Bl (15)
on

For the finite element analysis we assume that
N

6= Nj (x,y,2) ¢35t (16)
T

in which N; are the shape functions and ¢:(t) are the nodal values of
the field variable ¢. Substituting Eq. 8 into Egs. 14, 15 and 5, using
the Galerkin principle [7,8,9,10,11] and applying the Divergence theorem
we obtain:

N BN N ON. N ON.
[N. -—-z¢ Z—J-g¢.+2——lg¢. ds
gt dx T3y Y1 q ez 271
IVSN]_ N BNJ BNi N BNJ aNl N SNJ
- —S I St N == s .l dv
fv Bx%_jex 3Ty é_\;sy 573 21: 5z %3

N 3
N3 a__J. . f N;v_ds
T i

1 S EN: 3
oS [ n
+ngle}l:NJ¢s+ T

17

in which ¢ = dzd)/dtz, B = B1+B2, and %, .Q,y and %, are direction
cosines, and fJdv and fJds represent the integrals over the volume and
appropriate surfaces respectively. Using the approximation BNi/BZ =
BNi/Bn, Eq. 17 can be simplified to the following form

M§+ Kp=F (18)

in which the elements of matrices M, K and F are given by

1
M. = f ) (19)
1 Z EB2 NN

o, aNJ. N, aNJ. N, BNj]
Kij=Z[EV Ry v o] & (20)
Fi = Z'[EBI Nivnds (21)

where summation for M;; covers only the elements on the free surface
boundary and the integral is carried out on the free surfaces of each
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element EB2. Summation for Kj; covers the contribution of each fluid
element and EV is the element region. EBl refers only to the elements
which lie on the solid boundary Bl, and the loading term thus is associ-
ated with the elements that lie on the tank wall boundary. The free
surface matrix M and the fluid matrix K are comparable to the mass and
stiffness matrices respectively used in structural mechanics.

The finite element equations derived above apply to a general
3~dimensional case. However, in this study these equations were
specialized to axisymmetric tanks [6] and the computer code was written
to predict the hydrodynamic pressures p and sloshing displacements § for
arbitrary horizontal ground motions given by the following

13
5=_g§il (22)
p=—%3§ (23)

in which p is the mass density of the fluid.
MODEL TESTS AND CORRELATION WITH ANALYSIS

Tests were conducted on a 20-ft X 20-ft (6-m X 6-m) shaking table at
the University of California, Berkeley [12]. Annular tank tests used a
1/15th scale model of a Mark III suppression pool consisting of an 8 ft.
(2.4-m) diameter steel tank with observation windows and an inside
diameter of 5 ft. 6 in. (1.7 m) (Fig. 3). Torus tank tests used a 1/60th
scale model of a Mark I suppression pool (Fig. 5). In both cases time-
scaled accelerograms of the El Centro (1940) and Parkfield earthquakes
were applied in increasing amplitudes to determine the range of linear
behavior. Wave heights and dynamic pressures were recorded at selected
locations.

Analytical results for wave heights as predicted by the series
solution for annular tanks are compared with test data in Fig. 6 for two
different intensities of the El Centro 1940 ground motion. In Fig. 6a
the results are well within the linear range and comparison with theory
is accurate, and this also applied to similar results for the ground
motion applied at the actual intensity. Increasing the intensity by
approximately 40% above actual produced some nonlinear behavior as shown
in Fig. 6b. The range of linearity will depend on the predominant
response mode as well as on the tank and the water depth: in the case
shown the motion was primarily in the first radial mode and the limit of
linearity was associated with a maximum water surface gradient of 1/5.
The annular tank theory also gave good results for simple cylindrical
tanks by letting the inner radius approach zero. Comparison of the
finite element solution with the test results for the torus tank are
shown in Fig. 7 and indicate a similar level of agreement. In both
solutions the correlation between measured and computed hydrodynamic
pressures was very close.

67



CONCLUSIONS

The correlation between measured and. computed data indicate that the

linearized small displacement theory daveloped for annular cylindrical or
torus tanks can satisfactorily preédict the sloshing displacements and
hydrodynamic pressures in typical reactor suppression pools under the
action of strong ground motions such as the El Centro 1940 and the
Parkfield earthquakes. The theory is also applicable to plain
cylindrical tanks by letting the inner radius approach zero.
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