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SUMMARY

This paper clarifies some ambiguity in the definition of equivalent
viscous damping constant linearized from stress-strain hysteresis curve and
confirms the validity of the usual procedure in determining the dynamic
constants of soils. Throughout several dynamic response analyses of soil
structures with different computer programs under the same given conditions
this paper confirms too that same results are obtained from them if only
the characteristics of the frequency dependency of damping constant which
the computer programs possess are made uniform.

INTRODUCTION

The design equations for dynamic constants of soil structures consist
usually of the secant moduli and the equivalent viscous damping constants
defined for the stress-strain hysteresis curves obtained from seismic
prospecting tests in fields, laboratory tests of resonant column type for
low strain amplitude and dynamic simple shear or tri-axial compression
tests for higher one (Ref. 1-6). Such expressions are widely applied ta the
seismic stability analyses for many soil structures and deposits. However,
it 1is pointed out theoretically that the equivalent damping constants of
both bi-linear and Ramberg-Osgood models have a maximum value of 15.9 % of
critical damping (Ref. 8,9). In spite of that the actually measured damping
constants of soils are said to have the maximum values of 20 % to 30 %.
Moreover, there are some of ambiguity in the definition of above dynamic
constants. In this paper the reason for the discrepancy appeared in
the maximum values of above damping constants has been made clear and the
validity of the usual procedure in determining the dynamic constants of
soils has been confirmed to a certain extent of accuracy.

In the practical seismic design for every structure it is very
important for us to confirm that we can obtain same results from every
calculation with each of different computer programs under same given
conditions. In this paper several dynamic response analyses of rockfill
dams have been conducted with three computer programs of different
numerical integration procedures and it has been clarified that the
frequency dependency of the damping constant plays a leading role in
producing the equivalent results with all computer programs.

STEADY STATE RESPONSES OF SINGLE-DEGREE-OF~FREEDOM OSCILLATORS

Solutions Based On The Method By Kryloff And Bogoriuboff

As for steady state responses of single~degree-of-freedom oscillators
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having hysteretic force-deflection relationships to sinusoidal excitation,
an exact numerical solution for bi-linear system has been derived by Iwan
(Ref. 10), and approximate analytical solutions on the basis of Kryloff-
Bogoriuboff method have been derived by Caughey for bi-linear system (Ref.
7) and by Jennings for Ramberg-Osgood system (Ref. 9).

The equation of motion for the forced vibration of a mass m mounted
on a spring of which restoring force is expressed by F(x,x,t)is

mX + F(x,x,t) = f, coswt (1)
Let
k X w f
n = LU(%, woet = T, ;Z_y: Y Fy = kXy, —(,Guz Ny 'F"; = f (2)

where KX represents the spring constant for initial or micro-displacement
and X_ répresents a yielding or a characteristic displacement. Substituting
Eq.(2?/into Eq.(1)

) .
%f% + Eil%iiil = f cosnt (3)

Y

whereg’represents dy/dT Solution of Eq.(3) for the steady state response
is obtained as follows

y(1) = yocos(ntT+do) (4)
_oa2_ g - Clye) £ y2_(Slyalye ___Slyo)
X=mn*-1=—y">1 r/(yD) = }2, tando= g yoy,(5)

where C(yo) and S(yo) are derived with Kryloff-Bogoriuboff method and
denoted in the following equations.

Clyo) = L ogam F(yocos’éj_yosme,r) cos6db (6)
m 0 y
S(yo) = 7_1T_ qurr F(yocosg;youne,'r) sin6d8d (7

In resonance following equations to determine the resonant frequency and
the maximum amplitude are derived from Eq.(5).

Cly
2 - 0 -
Nres = —yo ? 5(Yo) = f (8)

Solution for a tri-linear system of which hysteresis loop is shown in Table
1 has been derived with above equations and is presented in Table 1
together with above mentioned solutions by Caughey and Jennings.

Solution For Strain Or Displacement-Dependent Equivalent Linear System

Let keq and ceq be the equivalent spring constant and viscous
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coefficient respectively and let

keq/k = k2, heq = ceq/(z/m keq) {9)
then Eq.(3) becomes
gi%’ 5 Zheq'(—g'?lt—+ k?y = f cosnTt (10)
Substituting Eq.(4) into Eg.(10) following equations aifhobtained.
yZ {(k2- n2)2 + 4h2q,<2nz} = f2, tand, = —Ergij—f%z (11)

Equating the 1loss energy due to hysteresis loop to the one due to
viscousity of the equivalent linear system, following equation is obtained.

2h kn = -S(yo)/yo (12)
q

The parameters k2 and he in Eq.(11) correspond to dynamic constants
of soils, that is, correspond to G/Goanah respectively which are

represented by the functions mainly of strain amplitude. In practical
seismic designs of soil structures the linear equation of motion such as
Eq.(10), for an example of the simplest simulation of general structure, is
solved iteratively untill the dynamic constants and the response strain
amplitude  become to be consistent with the design equations of them in
every part of the structure. In the present simplified simulation the
solution for steady state response of the equivalent linear system to
sinusoidal excitation can be obtained analytically from Egs.(11l) and (12)
without any iterative procedure and is expressed in similar form to Eq.(5)
as follows

2 S(yg)? [f2 5(vy)®
- n2.1 = _oh2 2_74+ (X7 0 ~h2 Y=z=g2-1+ L, - g (13)
X = n2-1 = (1-2h% )« 1_Jy% -—§%-(1 L T '“%g‘

The equivalent viscous damping constant he is specified for the resonant
condition and can be expressed as follows

h o= -2lyo) (14)

eq ~  2k*%y,
The resonant frequency and the maximum amplitude are derived from Eq.(13).

2 = |<2 S(yo) = f (15)

Nres ’

Congiderations

From dynamic simple shear or tri-axial compression tests, removing the
permanent strain from stress-strain relationship in +the latter cases,
hysteretic stress-strain relationships are obtained for most soils. The
hysteresis loop is linearized by the secant modulus defined with extreme
point of the loop and the critical damping ratio defined as follows

h =

N

oo A (16)
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where AW represents the area inside the hysteresis loop, that is, the loss
energy and W represents the triangular area, that is, potential energy
due to elastic deformation in the spring linearized by above secant
modulus. Jacobsen proposed to adopt " Work Area Under Skelton" as W
recognizing that there is an ambiguity about the definition of W in the
non-linear system. In soils the skelton is scarcely known so that it 1is
approximated by above secant line.
In the usual procedure determining
equivalent viscous damping ratio,
k is adopted for the equivalent
spring constant ke , that is, K
in Eq.(8) is taken tg be 1, and so
the value of W is considerably
larger than the one defined in
soils. For an example both of W
are shown in Fig. 1. Because of

this the maximum value of hg Fig. 1 Potential Energy
defined in a way for soils becomes about 4 times larger than the one
defined in usual procedure and is 2/7 in elasto-plastic cases. This

is the reason why the measured damping constants in soils have the maximum
values of 20 % to 30 %. Comparing Eq.(15) with Eq.(8), however, it is noted
that the maximum response amplitudes with the equivalent viscous damping
constants defined in any different ways coincide exactly with the one in
the solution by the method of Kryloff and Bogoriuboff if only the loss
energy of the hysteretic stress-strain or force-deflection relationship 1is
same. The discrepancy caused of different definitions for equivalent linear
systems occurs in resonant frequencies and the response characteristics
have to be investigated.

The solutions for the steady state responses of the equivalent linear
systems linearized from three hysteresis loops mentioned before in the way
for soils to sinusoidal excitation have been derived with Egs.(13),(14) and
(15). These results are shown in Table 1. The frequency response curves of
above solutions are plotted for several values of the force parameters f
in Fig. 2, and those of the solutions by Kryloff-Bogoriuboff method are
also superimposed in Fig. 2. From the agreement of both results for each of
three hysteresis loops it is concluded that the steady state responses of
non-linear structures can be described by the linear equation of motion
with the strain or displacement-dependent equivalent linear dynamic

constants defined in the way for soils.
Bi-Linear Tri-Linear 1 zZ
10.0 ' oDt ma?
- — Krylot-Bogoliuboff 0.0 _ ) . Ramberg-Osgood
~~Equivalent Linearization | ;ﬁﬂgmﬁ,",’;‘n 1o ~— Krylott - Bogoliubott

—-Equivalent Linear: zation

Fig. 2 Frequency Response Curves
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EXAMINATIONS ON THE CHARACTERISTICS OF SEVERAL COMPUTER PROGRAMS

Comparison Of Dynamic Responses Of A Fill Dam By Three Computer Programs

With the computer program NODAL developed by the author et al. many
numerical experiments of dynamic response analyses had been conducted on a
typcal rockfill dam of 150 meter in the height in which sine waves
possessing various acceleration amplitudes and periods were employed as
earthquake motions (Ref.11l). The dynamic values of materials applied in the
calculations have the characteristics of parabolic strain amplitude
dependency proposed by Hardin and Drnevich (Ref.6). The computer program
NODAL has a function of dynamic response analysis for visco-elastic body
with step-by-step integration procedure. Giving perfectly same cross
section, FEM idealization and dynamic constants of materials as those of
above numerical experiments some of above dynamic response analyses has
been conducted with the computer programs FLUSH and QUAD 4 (Refs. 12, 13).
An example of calculated results is shown in Fig. 3. The tendency of
calculated results agrees well to each other in all cases. The absolute
response values except for those in the crest and in the case of the short
period coincide nearly in all cases. In the case of short period, however,
there yields the discrepancy between the results by above three programs,
that is, the calculated acceleration becomes smaller in the order of FLUSH,
NODAL and QUAD 4. A major cause for the discrepancy is supposed to come
from the frequency dependency of damping constant of which characteristic
is different in every computer program.

Frequency Dependency Of Damping Constant

Nodal Pont
The computer program FLUSH DFLUSH , AQUAD4, O NODAL e
i s i Pom ™9 + - -
is a complex response finite ’“r [ v ],f ]
element program and main damping [/ 7 P
. —82
consists of complex moduli. | g e
Therefore the damping constant : —
. 1
is independent of frequency. The | :

computer program QUAD 4 is a
direct integration finite
element program and has damping
matrix proposed by Rayleigh. The
computer program NODAL has a
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system with visco-elastic \ fo; 2004l

damping such as Maxwell body, A PSR
- o

Voigt body, Zener body and four o %0 o %o o %o o A0 (gah

element body. Rayleigh damping

and the visco-elastic damping Fig. 3 Calculated Results by

have  the characteristics of 3 Computer Programs
frequency dependency. These characteristics have been analyzed and the
relationships between the damping constants and the natural angular
velocity have been derived.These results are summarized in Table 2. The
ratio of damping constant of the n-~th mode to the one of fundamental mode
has been related to the ratio of the n-th natural angular velocity to the
fundamental one. These relationships are plotted in Fig. 4. From above
results it is noted that Rayleigh damping utilized in QUAD 4 increases as
natural frequency increases so that the calculated responses
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Table 2 Frequency Dependency of Damping Constants

Stress ~ Strain n-th Damping h,
Model T~ Constant hy .
Complex =(Gtjno)y g% 1
T =(147, D)y
Voigt =T, W, Ln
T, =n/G, D=d/dt 2 " W,
Maxwell | T= —EELP—N. =0 1.1 (Eh)—
T+ Tm D m G 2 Tm Wn w1
T GGy 1+t1%i D y -1 -1
=G7G, TT, D -1 - T Tk
Zener GGy Tt 1 Tz —Tg 1+ 0% Wn
2wl T Wy T, Te! ey
Tk=nl/Gerz =n AG+G1) h T Tz (Yny2y Tz Tk w1
1 Wi Wl
T
: X
[t]=([c] D+ (K]} [¥] X [olX
[Cl=a[M]+R[K] 2/M§-X§[K]Xn
h hr/wny -1 Wn
= += 2 [(Xn Yn
hoy M1+3 (K] 213 7 (GT)]
. (QUAD4)
Rayleigh Mx =X [M] X, 1?'{(%"‘) T (50}
[M]: Mass Matrix Mrw?=X [K] X, ! '
[K]: Stiffness Matrix
wi: Angular Velocity
of 1lst Mode
! . Cal,c::ledznr:
G 20 4 FLUSH ‘
G—" [k e QuAD4 f
G 7 Ck * 14ha friq+ 0.6 $5KR
G , |
n L
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Fig. 4 Frequency Dependency Fig. 5 Variation of Response due

of Damping Constants

to Iteration of Analysis
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become small in the shorter period and that the Zener damping utilized in
NODAL increases at begining and decreases after peak point. These
characteristics coincide with the results shown in Fig. 3.

With FLUSH and QUAD 4 some of dynamic response analyses have been
conducted on a fill dam of which height is 60 meter. The damping matrix of
QUAD 4 1is modified so as to make the frequency dependency of damping be
even as shown in Fig. 5. Giving same initial dynamic constants dynamic
response analyses against an accelerogram have been iterated several times
with both computer programs. The calculated frequency response curves vary
with the times of iteration according to the given design equations of
dynamic constants as shown in Fig. 5. From the agreement of frequency
response curves by both computer programs, adding to the results in Fig. 3,
it 1is concluded that same results are to be obtained from every dynamic
response analysis conducted with different computer programs under same
given conditions if only the characteristics of the frequency dependency of
damping constant which the computer programs possess are made uniform.

CONCLUSIONS

Throughout above investigations the effect of damping constant on the
accuracy of seismic design calculation for soils and foundations has been
clarified and the reliability on the usual procedure of seismic response
analysis wutilized in practical seismic design of soil structures has been
confirmed.
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