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SUMMARY

The purpose of this paper is to estimate experimenta
function of the rectangular foundation rest on a soil ground exciting by the
vibration generator, and also, to discuss correspondence between theoretical
and experimental results. From those results, it is found that the experi-
mental compliance function does not well agree with the theoretical result
for the elastic half-space, but very well agrees with that for the layered
medium by reducing rigidity of soil medium near the boundary between soil
and foundation.

1ly the compliance

INTRODUCTION

Since E. Reissner's paper (Ref. 1) on vibration problem of the circular
foundation rest on a semi-infinite elastic medium, using the wave propagation
theory, many investigators have developed analytically the compliance function,
for various media, exciting directions, boundary conditions beneath the foun—
dation and so on. On the other hand, there are few papers on estimation of
the compliance function from experimental results (Ref. 3). Therefore, it is
required to make clear correspondence of the theoretical compliance to the
experimental one.

To detect experimentally the compliance function, the vibration test for
reinforced concrete foundation was carried out by using an unbalanced rotating
machine. The static and dynamic pressure distributions beneath the foundation,
and the amplitude and phase characteristics at the top of the foundation were
measured, and the dynamical ground compliance (compliance function) was calcu-
lated from those experimental results. The compliance function analyzed under
the assumption that a soil ground consists of a semi-infinite elastic medium
does not well agree with the experimental result. It is considered that
rigidity of the soil ground near the surface around the foundation becomes
smaller than that of the deeper soil medium during the vibration test. Because,
soil medium has the nature that its rigidity is narrow linear region, and that
it becomes smaller if the stress increases.

The compliance function of the rectangular foundation on two layered
media is formulated, and the effect of small rigidity in the upper layer on
the compliance function is discussed in this paper. The analytical compliance
function for two layered media with small rigidity in the upper layer is
compared with the experimental result, and is discussed their correspondence.
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OUTLINE OF THE VIBRATION TEST

Vibration tests were carried out for five kinds of reinforced concrete
foundations with various height at the campus of Kyoto University in Japan for
a year from December, 1980 to December 1981. A profile of the ground at the
site is shown in Fig.l. S-wave velocity Vg is 350m/sec, and P-wave velocity
Vp is 650m/sec. From these velocities, Poisson's ratio v=0.3 is calculated.
Dimension of the foundation is 2.0mx 2.0m in the plan, and 35ecm (CASE I), 70cm
(CASE TI), 105cm (CASE II), 140cm (CASE IV) and 200cm (CASE V) in height,
shown in Fig.2 and Table. These foundation were constructed by adding new
upper masses to the same base. The foundation was.excited vertically and hori-
zontally by means of an unbalanced rotating machine. The responses were meas-
ured at its top edge by some accelerometers, whose locations are shown by
symbol N, S, E and W in Fig.2. Soil pressure gauges were set at the bottom of
the foundation (Fig.3).

EXPERIMENTAL COMPLIANCE FUNCTION

The experimental compliance function can be calculated from the resultant
amplitude and phase characteristics of the foundation.

Vertical Excitation

The equation of motion for the soil-foundation system can be written as

. 1 :
‘- —_— w= T
mw T +idsy w=Py e . (@B)
where Jy=J1v +1iJgy : vertical compliance function
m : mass of the foundation
w : vertical displacement of the foundation
Py: amplitude of the vertical exciting force
w : angular frequency, t : time, i=v-1
Symbol ° : derivative with respect to time t
When the resultant velocity amplitude Ay and phase 6y of the foundation are
known, its behavior w can be represented by

w=Ayexp {i(ut-6Y)} e (2)

By substituting eq.(2) into eq.(1l), the compliance function is obtained for
each angular frequency;

_ 1 sin by
Wy My 3
Jou = — 1l cos 8y 3
2v wAy Ay /Py
where - 2 _ sin Oy 1 2 .
Ay=(mw)“-2nuw Av /Py + ( Ay /Py ) ‘ )

Horizontal Excitation

The equation of motion for the soil-foundation system with respect to the
horizontal translation up at the bottom and rotation ¢ of the foundation can
be written as

mao+ma&;+ m ug =PHeiwt
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1 .
m o= ZPHe it iee... (5)
where  Jg=Jyy +1iJog : horizontal compliance function
Jr=Jjr+iJyR : rotational compliance function
m : mass of the foundation, I : inertia moment
a : height of the gravity center, 7 : height of excitation

When the horizontal velocity amplitude Ay and phase 0y, and the vertical
velocity amplituc.le AR and phase 6gp at the edge were measured in the horizontal
vibration test, Uy and $ are represented as follows;

g =AH exp {1(ut - 05)} -1 Ag exp {1(ut - o))

(I+ma2) Zb'+ma i:\o+

) =—%—ARexp{i(mt— )y ©

where b is half width of the foundation and h is height of the foundation.
By substituting eq.(6) into eq.(5) the following expression can be obtained

nH=p [mw{(—‘;ﬁ—)%%—h-;i(%)hz—l})j—-%?—gcos(eR—eH)}
- %sin eH—%%sin oR) 1
Joyg =- wiH {(—?H-cos GH-%— —%l;— cos 6R) —% m m-%%—%sin (6r-6g)}
JiR = wiR [w{I’mbaz(h-a) (%%)2+%m—%§—$—§-cos (eg-6)} 777" 7
——%—%}%sineR]
J2R=——w—§'£-[mw-—§——§~§-—§g—sin(BR—GH)+%--%§-COS 6g ]
WhereAH= (mw)Z{("‘;—E)M(%)Z(—%{R—)Z —2%—%—;‘%COS(3R-8H)}
—me{—gﬁ-sineﬂ—h—;é-%% sin6g }+1
ppmwt((2Balo e (Ry2y g ayzigz ®)
+2 ﬂ,:?Ql--ﬁma —SR—-%H— cos( R~ o) ]
_zwz{ﬂéﬂiﬂﬁ&

. A . 2
== eyt+ 7
3 Py 510 Brtma Py SiP ul

ANALYTICAL COMPLIANCE FUNCTION

The compliance function of two layered media is analyzed. The model of
the ground consists of a semi-infinite elastic medium and an elastic layered
medium with uniform depth rest on that medium as shown in Fig.4. The equation
of motion for the isotropic homogeneous elastic medium is represented by

A BA A4, oo S
(>\+u){ax,8y,az}+uv{u,v,w}—p atz{u,v,w} (9)
vhere {x,y,z }= {% . —‘é—, —E—} : Cartesian coordinates
U \4 W . .
{u,v,wl= {—B— 55 —g-} : displacement with respect to x,y and z
_du |, v, ow P 32 32
b= dy t o Vo= x2 T dy? toz (10)
A, u:Lamé's constants, t : time, o : density
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By denoting Lamé's constants by A, Uy, density py, for the upper layered me-
dium, and Lamé's constants by A, Uy and demsity om, for the layered medium
and also, the depth of upper layered medium by D, the following relations are
introduced from boundary condition that the displacement and stress at interface
between the upper layer and the lower medium (z=d) are continued each other;

ug =uqy VI=v Wy =w :

I=um I=VI» ITVm at z=4d e (D)

OzI= Oz1ms» TxzI = TxzIl » TyzI = TyzIL v .

Next, the boundary conditions on the surface (z=0) are assumed by the
following form; . :
(a) Vertical excitation

{0 x| >b, or |y] >c.
-qy Q(t) x| £b, and [y|£c @ eesees (12-a)
Txz = Tyz =0

Oy =

(b) Horizontal excitation
T ___{0, . x| >b, or |y| >c
Xz~ " -qg Q(t) x| b, and |y|sc roreeee + (12-b)
Oy =Tyz = 0

(c) Rotational excitation

{O - x| > b, or ly| >¢ o -
-qg (x/b) Q(t) x| £b, and |[y|sc : S eeeees (12-0)
T‘xz‘=Tyz=O ’

Oz =

By introducing the 3—-dimensional Fourier transform with respect to x,y and t
into egs.(9)-(12), the following solutions can be obtaind.

(a) Vertical excitation

. Yave 2o ¢ EVE2-my2 /2 '
Jy= B bur= - 7 6 T(®) [, Sv(aoﬁ,c/b,e)d.e.il?. 1
(b) Roxizontal excitation .
_Yave . _ 8 . &  UE (t/y .2, ' -
Iy = & bur= —%- jo{ ——————————1012‘8111 8 SH(aoi,C’/.b,e ) de

LT 1@
EE5Lye) [7/2 cos?e sulagt,c/b,6) a8 bat

ceeene (18)

+

(¢) Rotational excitation

. ~_ ¢aVe 3 _ 10_ 0 E,‘/E;Z_nlz T[/Z . .
Jr= My b R fo Fg) L8 jo SR(aog’c/b’e)d.e.c.l?.. (15)
where, Py=4bcqy, Py=4bc K. MR=—3—b2c qR
F(E) =F) cosh { (a1 +0p)agd} + F; cosh {(a; - ap)agd} +F3 sinh {(a; +ap)apd}
+F% sinh {(a] -~ 0y)agd} +F5 . : Rayleigh Function ---(16)

F]_ = {(2;,' "'.1)2 - 4EZOL10L2}[{E2M2 - OthLL,,LZ} - 0L10£é_{K ;4520030Lq(u—l)2}]
Fp=-{(282 - 1)2 + 482010, } [ {£2M2 - 30412} + 0j0, {K2 =~ 482030y (1-1)2}]
F3=-{(282-1)2 - 482q70,} (0o +apag)ng?y '
Fy,={(282-1)2 +4£?a1a2}(a1a|+ - OLéOL3)Ils u
Fg5=882070 (282 - 1) {KM - 2agay (u-1)L}
T(£) =T cosh {(ag +0p)apd} + Ty cosh { (o ~ap)apd}

+T3 sinh{(aj +ay)agd} + Ty sinh {(a1 - ap)apd? ~  +----- an




Ty = (e1on +opog)ng?y, T3 =-{E2M2 - a30,L2} +ayap{K? - 4E%az0y (u-1) %)
Tp = -(a104 = az03)ns2y, Ty = {E2M2 - 030,12} +aq0, (K2 - 4E2030y (p-1) 2}

L(&) = ay cosh apapd +oyu sinh apapd : Love Function --+ (18)
U(E) = azucosh azagd + oy sinh apagd
V(£) =T cosh {(a) +ap)agd} - T, cosh {(a; - op)agdl}

+ T3 sinh {(0] +0p)agd} - Ty sinh { (o] - ap)agd}

K=282(u-1) +ng? L=282(p-1) -y M= 282 ( 2
> = u-1) +ng° - u
02 = Ezv_ 02, 0 =E2-1, anf= £ - n,%ng2 0l = Ezs_nsz
I A
ni? = (3252, = (320)?,  ng? = (gL y2
PI PII sTI
u=ug/um d=D/B, c=C/B, b=B/B=1, c/b=C/B
ap =wB/VgT : nondimensional frequency, B : reference length
Sy(ag€,c/b,8) =8Sy(agk,c/b,8)
=1 sin(agf cos 8) sin(¢/b-agf sin 8) 32
apgg cos 6 C¢/p-agf sin d
SR( agk,c/b,6) e a9
=1 3  sin(ag& cos 9) { sin (¢/b-ag& sin 8) _ _cos (C/b~a0£ sin 6)}]2
; c/b  aptcosO (e/b-agE sin 6)2 c/p.apE sin 6
an b
Wave = jfcj—b w(x,y,0) dxdy / j-(—:cﬂ—)b dx dy
c (b b
Ugve = I—cj-b u(x,y,0) dx dy / ﬁcf—b dxdy  eesees (20)

c (b c (b
dave = I—cj-—b x-w(x,y,0) dxdy / f—cj—b x2 dx dy
DISCUSSION OF RESULTS

The static pressure distribution at the bottom of the foundation is shown
in Fig.5. The solid lines show the test results, and the dotted lines are the
average stress calculated from weight of the foundation. It is found that, for
all cases of the foundation, the stress at the edge is greater than that at its
center. This is near Boussinesq distribution. The dynamic pressure distribu-
tions at the bottom of the foundation are shown in Figs.6-8. It is found from
Fig.6 that, when the eccentric mass of the unbalanced rotating machine EM is
small, the pressure distribution is rather uniform, but when EM becomes larger,
it approaches Boussinesq distribution where the pressure is greater at the edge
than at the center. Fig.7 shows the dynamic pressure distribution vs. the
exciting frequency, for CASE V and EM=10kg-cm. It is found from this figure
that the pressure distribution is approximately uniform at the lower frequency,
and approaches Boussinesq distribution at the higher frequency. The effect of
weight of the foundation on the pressure distribution in the case of EM = 20kg-
cm, f=20Hz in frequency is shown in Fig.8. It is pointed out that the heavier
the foundation, the greater the ratio of pressure at the edge to that at the
center. Figs.9.10 and 11 show the experimental vertical, horizontal and rota-
tional compliance function vs. the exciting frequency f, respectively. In
these figures, the symbol O shows the compliance for CASE I, @ for CASE I,

x for CASE II, A for CASE N and A for CASE V. The real part of compliance
becomes smaller, if the foundation becomes higher, but such tendency does not

appear clearly in its imaginary part.

In the following, the experimental results are compared with the analytical
ones. Fig.l2 shows the velocity amplitude and phase characteristics of the
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foundation (CASE II) against frequency due to the vertical excitation with EM=
6kg.cm. The phase characteristics are denoted as the phase delay of the veloc-
ity response behind the exciting force. The symbol O shows the experimental
results, while the solid line shows the analytical result for the elastic sewi-
infinite medium Vg = 295m/sec, the broken line shows the analytical result for
the two layered media, the ratio of the depth of the upper layer to the half
width of the foundation, d=0.1, the S-wave velocity Vgy=155/sec in the upper
layered medium and Vgyp = 310m/sec in the lower medium, and the dotted line for
the two layered media, d=0.5, Vg =180™/sec and VSI[=360m/sec. The S-wave
velocities Vgy and Vg py are chosen under the following assumptions; first, it
is assumed that the ratio of Vg to Vgy is equal to Vs[/Vgr=0.5 and secondary,
it is to choose such wave velocity that the analytical resonant frequency of
soil-foundation system coincides with the experimental one. In the case of the
semi-infinite medium, the analytical and experimental resonant amplitudes do
not agree with each other even if these resonant frequencies agree with each
other. But if it is assumed that the layered depth d=0.5, the analytical and
experimental resonant amplitudes agree with each other. Figs.1l3 and 14 show
the horizontal and vertical component of the amplitude and phase characteris-
tics of the foundation (CASE II) due to the horizontal excitation, respectively.
For the layer depth d=0.2, Vgy=130m/sec and Vg =260m/sec, the analytical and
experimental results with each other. Comparison between the experimental
compliance and the analytical one is shown in Figs.15,16 and 17, for the verti-
cal, horizontal and rotational components, respectively. TFor the vertical com—
pliance, the experimental result agrees very well with the analytical one in
case of the layer depth d=0.5. But for the horizontal and the rotational com-
pliance, the experimental results do not coincide very well the analytical omes.
Since the horizontal translation and rotation due to the horizontal excitation
couple together, some errors will appear when these compliance are estimated.

CONCLUSION

In this paper, both the experimental and the analytical compliance func-
tions are investigated, and it is pointed out that under the assumption
reducing rigidity of soil medium near boundary between soil and foundation,
both compliance functions coincide very well with each other. It will be
required to study further on this assumption in the future.
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Table

Specifications of the foundations
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CASE I I T v A
height of the foundation h (em) | 35.0| 70.0{105.0|140.0 | 200.0
width of the foundation 2b (em) | 200.0 | 200.0 | 200.0 | 200.0 | 200.0
height of the gravity center a (em)| 23.2| 40.0| 57.2| 71.0}101.0
height of excitation 7 (em)| 63.0| 98.0 133.0162.0 ] 222.0
weight of the foundation W (t)]| 4.16| 7.12]10.88|13.65|19.41
inertia moment I (t-m)| 1.46| 2.91) 4.81| 6.87|13.11
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