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SUMMARY

This paper presents compliance functions of strip foundations evaluated
by boundary element methods. The solutions are based on the free Green's
function of the Fourier frequency transformed wave equation. The method is
applicable to imbedded foundations, layered soil, ané topographically irregu-
lar sites because boundary and interface conditions are enforced by the dis-
crete boundary integral equations. Results presented here refer to rigid
foundations with rough footings. They include surface and embedded founda-
tions on the halfspace and on a layer on top of a rigid base rock.

BOUNDARY ELEMENT ANALYSIS

Cruse and Rizzo (Ref. 1) gave the fundamental solution for the trans-
formed wave equation. It allows, together with Betti's theorem, one to re-—
write the boundary value problem of elasto-dynamics in an integral equation
form, where all field values may be expressed by the data on the boundary.
Since the fundamental solution (or free Green's function) vanishes at infi-
nity the part of the boundary which lies at infinity does not contribute to
the boundary integral. This fact makes the boundary integral formulation es-—
pecially attractive for boundaryvalue problems with unbounded domains, as in
the case of a foundation in the halfspace. If Green's function can be found
which satisfies homogeneous boundary conditions for the considered problem,
then the boundary integral formulation becomes even more advantages (Ref. 2).
In the case of soil-foundation interaction the boundary integral equation
leads to a system of algebraic equations, relating displacements u and trac-—
tions t of the soil in the form'

(%I+z)u=l_lt M

In equation (1) I is the unit matrix, T and U are fully populated coefficient
matrices depending on the fundamental solution, the shape functions of the
boundary element approximation, and the domain. Condensation of the displace-
ments to the kinematic degrees of freedom of the soil-foundation interface
leads to the complex, frequency dependent dynamic stiffness matrix (impedance)
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of a flexible (limp) foundation. Its inverse is the dynamic flexibility
matrix (compliance). In the case of a rigid foundation kinematic constraints
in the foundation degree of freedom transform the stiffness matrix into the
stiffness matrix related to the rigid body degrees of freedom.

NUMERICAL RESULTS
In the following examples results obtained by the boundary element method
are compared with those found in the literature. They refer to a rigid strip
foundation with a rough footing. Constant displacement/traction elements are

used in all calculations.

Surface Foundation on the Halfspace

For surface foundations the coupling between swaying and rocking motion
is usually neglected. This allows a considerable simplification in the nume-
rical effort: only the soil-structure interface has to be discretized by
boundary elements (Ref. 3).The complex non-dimensional compliance functions
reduce to the diagonal terms of the compliance matrix

u G u G
_ X _z - dGB2
fxx(ao) N Px ? fzz(ao) - PZ ? fmm(ao) M 2)

for swaying, heaving and rocking motion. They are denoted in Fig. 1 as rela-

xed boundary conditioms (R.B.C.). In equation (2) uyx, u, represent horizontal
and vertical motion, ¢ is the rotation of the center of the foundations; Py,

P,, M denote the corresponding line loads. G is the shear modulus of the

soil with Poisson's number v = 0.3. The dimensionless frequency is defined as

wB

a =22

o ¢

s

where cg is the velocity of a shear wave in the soil and w the frequency. B
is the half width of the strip-foundation. In the numerical analysis 10
boundary elements have been used within the foundation. The element discre-
tization outside the foundation influences the diagonal elements of the com—
pliance only slightly and may therefore be omitted. This has already been
demonstrated in (Ref. 2) where it was shown that the difference between the
boundary element solution (R.B.C.) and the halfspace solution is small. This
fact is supported in Fig. 1 where impedance functions with non-relaxed boun—
dary condition (NR.B.C.) are shown. Here the discretization is continued by 5
elements for a length B on each side of the foundation. If cross coupling
between swaying and rocking is of interest the discretization has to extend
further on both sides of the foundation by a factor of 4 to 5 (Ref. 2).
Otherwise the off diagonal elements fpy and fyy, which reflect the coupling
between swaying and rocking, will not be computed accurately enough, showing
a pronounced asymmetry.
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Fig. 1 Compliance functions of a surface foundationon the halfspace (v = 0.3).
Comparison of relaxed and non-relaxed boundary conditions.

Surface Foundation on a Soil Layer

The boundary element method is equally applicable to infinite and bounded
domains as well as to exterior or interior regions. To demonstrate this a sur-
face foundation on a soil layer with hysteretic damping, having the same geo—
metrical and material data as used by Tassoulas (Ref. 4) and Gazetas (Ref. 5),
is analysed. Geometrical and material properties as well as the discretization
are shown in Fig. 2. Note that boundary elements are only necessary at the
upper and lower boundary of the layer.
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Fig. 2 Surface foundation on a soil layer.

Geometrical and material properties.
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Fig. 3 Compliance functions of a surface foundation on a soil layer.
a) — e): Poisson's ration v = 0,3; f) Poisson's ratio v = 0.4.
—-~ Halfspace Solutiom (B.E.M.)
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Fig. 3 a) ~ c) compare the boundary element solution with results obtained
by a semi-discrete finite element method (Ref. 4). The diagonal elements of
the compliance show only small deviations at the resonant frequency of the
layer. It is of interest to note here that for the soil layer only 5 ele-
ments on each side of the foundation are sufficient to obtain symmetric
coupling coefficients, scaled as

u_Gb
X

fem = W > I =9 (3

Unfortunately the coupling coefficients are not given by Tassoulas (Ref. 4).
The compliance functions for a deep soil layer (H + «) are also indicated

in Fig. 3 a) - e). The compliance function f,, of the same foundation/soil
layer configuration is shown in Fig. 3 f£) but here with Poisson's ratio

v = 0.4. In contrast to our results, which show the same qualitative behavior
as in Fig. 3 b), the functions obtained by Gazetas (Ref. 5) by a semi-analy-
tical method show two peaks in the frequency range 1 < a < 2.

Embedded Foundation on a Soil Layer

Embedded foundations always have to be calculated with the complete
equation (1) (T # 0). The assumption, that horizontal and vertical motions
are decoupled do not lead to the simplifications mentioned for surface foun-—
dation. Otherwise the boundary element analysis follows the same steps as
for surface foundations. Any physical boundary conditions at the foundationm,
rough or smooth (relaxed or non-relaxed) may be considered. In Fig. 4 geome-
trical and material data for an embedded foundation on a soil layer are shown.
The compliance functions arereferred to the center of the rigid foundation.
Again hysteretic damping is assumed. The somewhat finer discretization along
the vertical sides of the foundation is suggested by numerical tests. In
Fig. 5 all coefficients of the compliance matrix are shown and compared with
results obtained by Chang Liang (Ref. 6) by a semi-discrete finite element
method.

H=30m v =030
B=15m B =10%
T=10m

Fig. 4 Embedded foundation on a soil layer
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Fig. 5 Compliance functions of an embedded foundation on a soil layer

Whereas the diagonal elements show good agreement, the off-diagonal elements
differ significantly. It should also be noted that the coupling coefficients
of the boundary element solution still show some asymmetry. This should,
according to our experience, improve as the region of discretization outside
the foundation is enlarged.

CONCLUSION

The boundary element method is well suited for soil-structure interaction
problems. Good agreement with other methods is found for surface and embedded
foundations in a halfspace and on a soil layer on top of a rigid base rock.
Applications to layered soils fall within range of the method. One of the big-
gest advantages over other methods may be its generality. Its application is
not restricted to horizontally layered systems; the discretization may well
follow the topographical disturbances of the site.
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