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SUMMARY

A simplified method for dynamic analysis of earth dam with foundation
interaction 1s presented for practical application. It reduces a three
dimensional dam-foundation system to a series of two degrees of freedom
system connected along the dam axis, representing the dam as an assemblage of
prismatic finite element, and employing the concept of the dynamical ground
compliance. After a demonstration of the dam-foundation interaction observed
by micro-tremor measurements, formulation of the method is described with
analytical examples.

INTRODUCTION

It has been well known that an actual embankment dam especially built in
a narrow canyon would reveal significant influence of canyon restraint on its
vibration characteristics during earthquakes. Moreover, not a few earthquake
records obtained simultaneously at both abutments of existing dams have shown
differences in amplitude as well as in phase (Ref.l). Thus, dynamic analysis
of an actual dam should take into account these three-dimensional effects in
an appropriate manmer. On this basis, the authors proposed a simplified
three~dimensional finite element model which lias proved to give satisfactory
results for practical purposes (Refs. 2, 3). In this article, the simplified
model is extended to a dam-foundation system.

Due to. the facts that ideal construction sites for higher dams have
become small in number, and that embankment dams are adaptable to relatively
poor dams sites, the dynamic interactions with embankment dam and foundation
seem to be one of the most important subjects to secure earthquake resistance
of dam. With an extremely large computational job and tedious work, the
dynamic dam—foundation interaction in three-dimension could be treated by
applying the finite element technique developed for the two-dimensional system
(Ref. 4). The simplified method presented here is aiming at improvement of
the practical applicability. Prior to formulation of the method, an instance
of the interaction cbserved at an actual large dam is briefly showm.

INTERACTION CHARACTERISTICS OBSERVED AT AN ROCKFILL DAM

Micro-tremor measuremens were carried out at an existing rockfill dam
which is 90 m high and 487 m long on the crest. The left bankside of the dam
is founded on uncemented deposits mainly of volcanic mud flows by which
basement rock of hard dacite is thickly covered, as shown in Fig. 1. In the
figure are shown typical Fourier amplitude spectra at several observation

(1) Associate Professor, The Graduate School at Nagatsuta, Tokyo Institute
of Technology, Yokohama, Japan
(IT) Graduate Student, ditto

1065



E E
g‘w :L"n' :_:1‘3
g -3 S
5 e 2
gg e 58
8 ~d e
w = L
b » P
Bl I UG 1 2 AN W 715 S— —
° )I oo ' 2.00 3.00 4.00 Hz 1.p0 2.00 ‘ 3.00 4.00 HZ 1.00 l 2.00 3.00 4.00 HZ
prase™( a8y ! h
“=i\\ 2130 oo \ Jﬂ7
e =
1300
LWL grzu
. notes:
fesa Da=Dacite
T B An=Andecite
L‘;z-..-:::::-_-. _ - o Si=Silt
-8 =8 Vm=Volcanic
7 ° x ° Mud Flow
b=t ap
. Te Xe
Fig. 1 g 3
. L w
Fourier Spectrag, o
of microtremors 84 J g
2He S

r T L T T T T T
1.

T 1 T T T
1.00 2.00 3.00 4.00 5.00 oo 2.00 3.00 4.00 S.ODHZ

Hz
points. It can be seen that the displacement amplitude of the left abutment is

almost twice as large as that of the right abutment, and that a lot of peak
frequencies are too close to each other to distinguish natural vibration modes.

FORMULATION OF THE METHOD

Simplified 3-D Finite Element Modeling of Dam

Let us take the x-coordinate parallel to the axis of a dam, y- in the
upstream~downstream direction, and z- vertically downward. Basic assumptions
employed in formulation of dynamic properties of the dam are: 1) The dam is a
linear elastic body with triangular cross sections, 2) shear distorsion is
predominant during vibration in the y direction which is concerned in this
article, and 3) shear modulus distiibution in the dam is expressed as

G =G,z 1)

where z, G, and a are depth below the crest and constants, respectively,
while mass density P is uniform within the dam.

From the above assumption 2), modal displacements relative to the
foundation can be approximately represented by

v(x,2)-v(x,Hy) = f(x,2) {v(x,0)-v(x,H)} 2

where v(x,0) and f(x,z) denote displacement of the crest and a modal shape
along the height respectively. From the previous studies, the shape function
f(x,2z) associated with Eq.(l) is given by

£(x,2) = ¥ I (V) (3)

where 2-a
oy (2 2
V= G @)

m
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"7‘3 (5)

and J\)(\ll) denotes Bessel function of first kind and order VY, Ha the m~th zero
value of J\)(KP), Hy the cross secional height, and ¢ a normalizing constant.
Fig. 2 shows the lowest two modal shapes (m=1,2) for several values of a.

Consider a prismatic finite element which is obtained by deviding the
dam with respect to the x-z planes, as shown in Fig.3. The element has four
movable nodes, two of which (i and j ) locate on the crest and others (s and
t) at the base. Using local coordinates originating from the node i, the
deflection along the crest is given by linear interpolation of deflections at
nodes i and j.

v(x,0) = SCv, (6) £ 0.0
b fi
where & LR /;}l m=2
= 0.2 7
g a=1l/ 7/
S=[1 x ] N = /,‘7
S i
C 1 O ( ) a 0.4 ¢ %"/
[-1/& 1/2 g P74
T g /,"/,/ 0 /‘.'l
v=>[v, vl @ g %1 /% if!
e : 7 i
Similarly, the deflection at § é? N
the base is interpolated as @ 08 éy Q@\
g 4 R
= B
= \
v(x,H) = SCvy, (10) = 1.0
0.0 0.5 1.0 -0.5 0.0 0.5 1.0
where f(x,2) f(x,2z)
V= [ vg vt]T (11) Fig. 2 Lowest Two Modal Shapes along Depth

Thus, the modal displacement at any point of the dam is given by
v(x,2z) = Sc{f(x,z)vc+ [1—f(x,z)]vb} 12)
Shear strain vector associated with the displacement in Eq.(12) is

7= [gy Yyz 1T = [dv(x,z) /dx dv(x,2) /dz] T

= BCv_+PCv 13)
c b
where
B - fém@ f@JHﬁX@Jq (15
fz(xaz) sz(X,Z)
b {-fx(x,z) l—f(x,z)—xfx(x,z)}
- (15)
—fz(x,z) —xfz(x,z)
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Shear stress vector related
to the strain vector is

tT=D7 (16)
where
= [G O (17)
D [0 G]
The principle of virtual (q)

work applied to the element
provides the stiffness and mass
matrices expressed by

= |k (18) X st - —
ky K, ,T I IS

m = [ml mz] (19) !
M3 M (b)

where Fig. 3 Prismatic Finite Element of Dam

k.= vaTBTDBc d(vol) (20)

k= k§= s L™BTDPC d(vol) @1

k,= / CTPTDPC d(vol) 22)

m= J, 0f”(x,2)C’STSC d(vol) 23)

my= M= /[, P (x,2) [1-£ (x,2)1CTSTSC a(vol) 0

m,= J, ol1-£(x,2)1%CTSTSC d(vol) (25)

Eplicit forms of the above matrices are available in Apendices.

Simple Description of Foundation Properties

The simplest way to describe dynamic properties of ground underlying the
dam is to establish parameters of a single degree of freedom (SDOF) system by
which the ground is approximated. The parameters associated with horizontal
vibarion of a rectangular plate resting on an elastic half-space can be
evaluated through knowledge of the dynamical ground compliance (Ref. 5). 1In
a strict sense, the parameters evaluated from the dynamical ground compliance
are frequency-dependent and adaptable only to a rigid plate. For the present
purpose, however, they can be roughly regarded as independent of frequency,
and also representative of properties averaged over a certain extent around a
nodal point on the interface. With h and w denoting a half-lenth and a half
width of a rectangular rigid plate, respectively, the parameters of the SDOF
system are expressed as
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spring constant : kf= 4.7(w/h)1/2h Gf (26)
. _ 2

mass tom= 0.37(w/h) 03 0 27)

damping constant : ce= 2.4(w/h) h2!/ prf (28)

where a subscript f represents the foundation. The appropriate extent of the
hypothetical rigid plate is determined by supposing both h and w, and comparing
such analytical results as natural frequencies and modal shapes with those
evaluated by the conventional method.

Structural matrices for the & = i i
entire dam-foundation system can ., i fA=9l.4m
be obtained by assembling all the 2 Gg/G4= 100
element matrices and foundation & e e——
properties in an appropriate way. & 1ot T —
£ T
B
ANALYTICAL EXAMPLES & . ]
g (Ao DOF with pe=ny=2.1 :/m’) _2n e N\
Numerical analyses were done & and V5=/Gd7p§=3 5 m/s
for two kinds of homogeneous earth % 10 20
dams, one located in rectangular LENGTE 1O HEIGHT RATIO L/H
canyons and the other in triangular Fig. 4 Frequency of Dam with
canyons, changing a shear modulus Rectangular Foundation

ratiobetween the foundation
and dam. As for h and w
in Eqs.(26)-(28), they
were found to be related
to the element length £
as well as to the shear
modulus ratio Gf/G3. In
this study, they were set
to w=h=8/2 for Gg/G4=100 €./6.~ 100
and 10, and w=h/2= { for d
Gf/Gd=3 and 1. 1In Figs.

4 and 5 are shown the 1.01 3
analytical results with 1
respect to the fundament-

al mode of vibration. In t 1 3
Fig. 4 bloken lines show LENGTH TO HEIGHT RATIO L/H
the frequencies evaluated
by the two dimensional
finite element analysis
(Ref. 4).

42 DOF

N| L _'7,
E=91.4%

eg0 =2.1 t/n?
/Ed‘/";?d=305 n/s

2.0q

FUNDAMENTAL FREQUENCY Hz

Fig. 5 Fundamental Vibration Mode of Dam
with Triangular Foundation

CONCLUDING REMARKS

A simplified method has been presented for dynamic analysis of embankment
dams with foundation interactions. Although the foundation treated in this
article was supposed to be a uniform elastic medium, the method has advantage
of being applicable to layered media only with a slight modification for Eqgs. (
26)-(28). Despite drastic simplification regarding a dam~foundation system,
the authors believe that the method will serve one to draw many useful findings
from actual dynamic interaction phenomena, and to estimate dynamic behaviors of
the dam-foundation system during earthquakes.
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APPENDICES

Explicit Representations of Element Matrices

To evaluate the volume integrals in Egs.(20)-(22), it is convenient to

express them as

= klA+ le+ k1c+ le (A1)
Ky=—kp+ kyu* Ko (42)
k= Ky= 2Ky Koat Kyp (43)
where
R ~AT\T Hy 22 +1_.2
k1A~ Gob fo C"N"NCax fo £f%(x,z)dz (AL)
kjg= C.b /i CTNTS + ™)y Cax /7™ 22 (x,2)E (x,2)dz (A5)
_ 2 ~TT Hy a+1 2
le-— G b fo c's SCdxfO £ (x,2z)dz (A6)
_ % ~T.T Hy  atl 2
le— Gob fo Cc'S SCdxfo 25 Of (x z)dz (A7)
_ % ~TT Hy _at
kZA— Gob.fo C°S NCdxfOX z f(x,z)dz (A8)
_ 2 ~T\T Hy atl
kZB— Gob fo C°N NCdxfo z fx(x,z)dz (A9)
ky,= G b L CTONTS+ STNy Ca [ za+1fx(x,z)dz (A10)
k,p= G b CINTNCax s ™ - a“ (al1)
in which b denotes a width to height ratio of the dam, and
N=[0 1] (a12)
|
here
| W
2 pb(\H-l)lJ\H_l(u ) mi‘ m§ l
M e 2 | mik= 1282+ 6 2
120]__{m m’2¥ m%c : l+ H. HJ +2HJ
' 2 2
2 m&= 3H + 4H, H + 3H,
2
m=c (\)+l)pbl{ 2 I+l (le)_ ¢ o1 (um)} ': o} m’ii’ : 1 13 3
2 120 - v 2V s op2
W u m¥ 1:1=3k : L l+ 6H. HJ + 12H
|
2 2
o bl n 4c(\)+l).]'v+l (um)+ c <\)+1)J\)+l(um)} m’f m’2¥
4 120 V+1 AV % *
le u1:1 ] 1113
Table Al Explicit Element Mass Submatrices
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Substituting Eq.(3) into Egs.(A4)- 1000 ——m—r——r —————
(A10) and integrating with respect to x /
and z, respectively, provide explicit /
forms of each submatrix. The integrals 500} // /4

with respect to z in Egs.(A4)-(A7) were
analytically determined, while those in
Eqs.(A8)-(All) were numerically deter—

mined with the results shown in Table A3

and Fig. A in which I1 and 12 are
Il= %HX za+1f(x,z)dz (A13) 100
_ rHy _atl
IZ— % z fx(x,z)dz (A14) -
Explicit forms of the element stiffness
submatrices are shown in Table A2, and
those of the mass submatrices in Egs. (
23)-(25) are shown in Table Al. 20
\J a m I I
1 2 10
0 0 1 1.248460  2.497442 N
2 -1.878288 -3.755761 5
1/5 1/3 1 1.848415 5.175086 —_
2 -5.968489 -16.72133 =
2
1/3 1/5 1 2.680104  8.938631
2 =12.43695 -41.47649
1
1/2 2/3 1 4.683269 18.74315 0.0
2 =31.49922 -125.9601
) SR W T 1 A 1 1 1 1 — |
1 1 1 39.51253  237.1729 0.0 .2 .4 .6 .8 9 1.0
2 -608.8475 =-3655.191 a==2
1+v
Table A3 Several Examples of I1 and I2 Fig. A Values of I1 and 12
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