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SUMMARY

The goal of this article is 1) to present an efficient method for the
integration of the boundary integral equations and 2) to apply th preceding
method for studying the effect of the surface topographies on underground
structures. A stable explicit integration scheme of the boundary integral
equations is presented where the computational effort is of the order of
constructing the matrix of coefficients and no matrix inversions are involved.
The method is applied to studying the interactions between valleys and tunnels.

INTRODUCTION

The goal of this article is 1) to present an efficient method for the
integration of the boundary integral equations and 2) to apply the preceding
method for studying the effect of the surface topographies on underground
structures. The formation is based on the boundary integral equations.

In most earthquake engineering problems, the response of a system is
needed at many discrete values of closely spaced frequencies (usually several
hundreds, at intervals Aw of 0.01 sec'l) and over a fairly large range (usually
w=0 to 25 Hz). Whereas for direct solution procedures, calculations at each
frequency are independent ones, the proposed method exploits the information
contained at preceding frequencies for constructing the solution at new
frequencies. More precisely, the solution at a frequency w 1is used as the
initial guess for the solution at the frequency w+Aw in an iterative process.
Hence, by starting at w=0 where the initial guess of dropping the integral with
the unknown is exact, one can proceed to higher frequencies by updating each
time the initial guess by the solution at the preceding step. The procedure
can thus be termed as an explicit integration in the frequency domain. Recalling
that in many applications, earthquake problems in particular, where one cal-
culates responses over a range of frequencies, this very accurate starting
value is provided at no extra cost by the calculations at the preceding
frequency. Whereas for direct solution methods,calculations at each frequency
are independent from others, the proposed method exploits solutions that are
necessarily available at preceding frequencies to achieve significant compu-
tational efficiency. Results are presented for the scattering of SH waves by
concave (valley) topographies and an internal circular tunnel. Various wave
numbers and depths are considered. The purpose in considering the various
cases is to see whether one can systematize the responses for given geometries
and develop intuition for guessing qualitatively the expected response (Fig. 1).
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EXPLICIT INTEGRATION IN THE FREQUENCY OF BOUNDARY INTEGRAL EQUATIONS

Here we present schematically the basic idea involved in the iteration.
This is an extension of the work presented in References 1-3. Consider the
integral representation for the wave amplitude u for harmonic waves

L=u + ” HG-x') ux') - G(x-—x")t (x')da! 1)

where ul is the incident wave displacement vector, t , is the stress vector
for the total wave, G is the matrix Green's function For the homogeneous
medium, H is the strgés tensor associated with G dotted by the outward unit
normal at the point x' and B is the boundary of the region. For a full or half
space the integral on the infinite sphere or semisphere vanishes by the
radiation conditions. For the infinite space, B consists of the boundary of
the foundation, while for a half space, B includes also the boundary of the
half space.

The kernels H and G are singular as x' + x for x being a point on the
boundary. With this in mind, using the well-known results and interpreting
the integrals in the sequel by their principal values, for x on B we have the
integral equation with g showing the contribution of the singularities:

Lo ru@) =y & + H H(x-x").u(x')dA -
B

”Bg(x-x')-gn(X')dA' )

To be specific let t =t ° be prescribedon B. In this case (2) is an
. . —n _ —n
integral equation for u.

We consider incident fields u, characterized by a frequency w or equiva-
i X . .
lently wave number k. The above integral equation can be solved iteratively
at the frequency wtAw = (n+l)Aw by using the solution at w=nAw in the right
hand side terms. Putting in the frequency parameters, Eq (2) leads to:

(1~ -u(x,wtiw) = ui(x;u-f-Aw)*' ”' H(x-x'; wtiw) (Ei(i' ;uﬁ-Aw)+us(§' ;w))dA'
B

+ ” S(x —x';wthw) £n° (x'su+dw)dA’ (3)

In this case, no equation is left to be solved. Clearly the stability of such
a scheme is the crucial test for its usability. Once this has been established,
accuracy is determined by how well the integrals are evaluated numerically and
how well is Es(§f;w) an approximation to Es(g';w+ﬂm).

CONVERGENCE AND ACCURACY TESTS
This section establishes the convergence of the proposed scheme both
analytically and in an example. Figure 2 presents results for SH waves

scattered by a circular cavity for which an exact solution is available as an
infinite series. The calculations are carried with' Aka = Aw(a/c) = 0.1 for
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ka=0 to 10. It is hence seen that the solutions thus obtained without any
matrix inversions are almost exact. An analytical proof of the convergence of
the proposed scheme for the case of a circular hole in infinite space is easily
obtained. The integral equation for the scattered displacements obtained from
the integral representation for the total displacement is

2w
. 1 8'-6 . 8'-8 :
uS(X) U+ f Hl(2ka sin = ) 2ka sin 3 u(e')de
0 %)
Let _
u, = u + e (5)

where u_ and u_ are respectively the actual numerically calculated and

exact vaiues; e iS the error contained in the iterative values. Since the
incident wave wu, 1is prescribed, it contains no errors. The stability analysis
is based on considering the amplitudes of the Fourier components of the error.
An increase or decrease of these from step n to step nt+l provides the criterion
for convergence and divergence. With the exact quantities satisfying the exact
equation and with the Fourier components of the error as en+l=An+lexp ig-§ and
en=Anexp ii'f the growth factor is obtained as:

A . 27 ig-x

_ o+l _ ika . 8'-8 . 8'-8 12 '

g8="p =5 J Hl(Zka sin = ) sin o e dg
n 5 (6)

.
Thus using the Schwartz inequality and the transformation 62 ® . X
T

lg] < ka I | H (2ka siny)|siny dy %)

0
The value of the integral being less than one provides a conservative criterion
for convergence. For the high frequencies where convergence due to the high
oscillations becomes more critical. Using the asymptotic expansion for the
Hankel function, we get

u 1
el 5{% J sin® y dy = o.w’k—ﬁ (8)
T

0
This gives a very comfortable upper limit for the frequencies as ka=20. Once
the convergence of the scheme is established, the task now is to evaluate the
necessary numerical integrals to a desired accuracy. Table 1 and Figure 2
show comparisons with exact results at ka=1,3,5 and 10. The whole set of
calculations for figure 2 (the most expensive set) took only 20 cpu units on
Princeton University's IBM 3081l. It must be realized that the computational
effort is only of the order of comstructing the discretized equations of an
analogous direct solution of the boundary integral equation.

EFFECT OF SURFACE TOPOGRAPHIES ON TUNNELS

Earlier calculations by several authors on valleys and tunnels indicated
quite significant changes in responses and the scattered waves with changes in
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parameters. In the hope of perhaps systematically understanding the effect of
surface topographies on tunnels, we present several case studies. The cases
considered are with a flat free boundary as well as boundaries containing

concave (valley) topography defined as jA(l+cosmx/a) with A = 0.5 and 1. The
incident waves are taken to be horizontal, at 45° and vertical SH waves and several
depths are also considered for a circular tunnel. The Green's function has the fornm
g =G (x-x', y-y') + 6 (x-x',y+y') such that the integrals along the flat part

of the half space boungary vanish. Similarly the incident wave is taken as the
free field solution satisfying stress free conditioms on a half space with a

flat surface. Some results are displayed in Figures 3 and 4. The total computation
time for producing these figures of 27 different parameters was 76 CPU units at
Princeton University's IBM 3081.

DISCUSSION

The building of intuition for being able to estimate qualitatively the
scattering patterns of seismic waves in the present of surface topographies
and structures requires the large number of results. The present set of
calculations with various parameter studies were aimed at a systematic under-
standing of the responses with varying parameters. With the limited number of
results presented, the only general conclusion is that the interactions are of
long range. This is understandable, since waves decay asymptotically as 1/Vr.
It is also seen that the surface topography and the tunnel influence each
other quite strongly and their collective behavior is quite different from
their individual response. The explicit iterative scheme that is presented
is shown to be stable both analytically and with examples up to very high
values of the nondimensionalized wave number. Since the scheme does not
necessitate matrix inversions, the computational cost is of the order of the

construction of the algebraic equations in a direct solution of the boundary
integral equationms.
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TABLE 1

Error Analysis for Calculations of the

Problem in Figure 1

N=10 N=40 N=10 N=40 N=10 N=40
Aka=0.10 A ka=0.25 A ka=0.50

ka=1 0.04 0.04 0.10 0.10 0.26 0.26

ka=2 0.16 0.16 0.15 0.15 0.36 0.36

ka=3 0.06 0.06 0.14 0.14 0.39 0.39

ka=4 0.05 0.05 0.15 0.15 0.43 0.44

ka=5 0.10 0.07 0.18 0.16 0.42 0.43

The values N indicate the number of intervals on the semicircle,
Aka is the increments used in the integration in the frequency
domain.; The values in the table show the error in the norm defined

1
as ( || Uoy = u[2 de'/2m)? for the indicated values of ka. Yoy

and u are, respectively, the exact infinite series solution and
the values obtained by the present scheme.

a/2 aq a
L  —
N\d

pat d

Figure 1: Notation for the Surface Topography, Tunnel and Incident Wave
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Figure 2:

Radial Plots Comparing the Solution by the Present Scheme (—)
With That by Exact Infinite Series (---). The Problem is that
of a Circular Hole of Radius a with Incident SH-Waves of
Wave Number k.
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