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SUMMARY

In this paper studies are made to investigate the effect of viscous dash-
pots, which are introduced in a two-dimensional analysis to simulate energy
dissipation in the third direction due to radiation, on the response of
structures subjected to seismic waves. The analyses are made by the boundary
element method combined with the substructure technique. A comparison among
results obtained by two-dimensional, approximate three-dimensional and exact
three—dimensional analyses leads to the conclusion that the existence of
viscous dashpots produces a significant effect on the dynamic behavior of
structures.

INTRODUCTION

The study of the soil-structure interaction for nuclear power plants and
other massive structures is often conducted on the basis of two-dimensional
representations due to the large effort involved in a realistic three-
dimensional analysis. Previous works (Refs. 1 and 2) have shown that it is
difficult to obtain a good estimation by a two-dimensional representation that
approximates both the dynamic stiffness and the radiational damping over a
reasonable range of frequencies. From this point of view a method of appox-—
imate three-dimensional analysis of dynamic soil-structure interaction problems
has been proposed, where the three-dimensional effect was achieved by the addi-
tion of viscous forces (dashpots) to account for wave propogation in the third
direction (Ref. 3). Though these viscous dashpots have been widely used in the
dynamic finite element analyses, the effect of them on the response of struc-—
tures subjected to seismic waves seems not to have been discussed in detail.

The authors have already studied by the use of the boundary element method
the effect of viscous dashpots introduced in a two-dimensional analysis on the
dynamic response of structures through the analysis of surface foundations
subjected to seismic waves (Ref. 4). In this paper, the study is extended to
the case of embedded foundations. Foundation-soil systems considered and the
method of analysis used are similar to those in the previous study (Ref. 4).

METHOD OF ANALYSIS

To study the effect of dashpots on the dynamic soil-structure interaction,
embedded rigid foundations are selected as illustrated in Fig. 1. The sup-—
porting soil, to which dashpots are added, may or may not have a rigid rock at
some depth. The analyses are made by the use of the boundary element method
combined with the substructure technique. The formulation of the solution
method is briefly summarized here.

(I) Ohsaki Research Institute, Shimizu Construction Co., Ltd., Japan

689



Substructure Formulation

Based on the assumed linearity of the model, the foundation-soil system
can be partitioned into a set of simpler subsystems at the interface between
the soil and the foundation, i.e., the soil subsystem and the foundation sub-
system. The complete foundation-soil interaction problem is subdivided into
four steps; i.e., evaluation of (1) the impedance matrix for massless rigid
foundations, (2) the free—field motion of the soil in the absence of founda-
tions (3) driving forces to keep foundations fixed and (4) the total motion.
The boundary element method is applied in the first and the third steps while
the well-known solution based on the theory of elastic wave propagation is
used in the second step. The calculation in the fourth step will be achieved
by a simple algebraic operation. Since viscous forces are proportional to the
relative velocity between the soil under consideration and the far-field,
dashpots are added in the first and the third steps.

Boundary Element Formulation

For an isotropic viscoelastic body, the displacement U, in the presence
of viscous forces, satisfy the equation:

A+ pVV-u+ yV2u+ pmzu— iopu= 0 oo (1)

where P is the density of the body, n is the viscous damping coefficient
related to dashpots, and A, U are complex Lamé's constants. By the application
of the method of weighted residuals with the help of an appropriate fundamental
solution, the displacement vector UZ%of a point % at the boundary of the domain
under consideration can be expressed in terms of the boundary values:

p*udr‘:J u*p dl’ cee (2)
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T
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Foundation 1 Foundation 2

in which, C% is the coefficient matrix de-
pending on the geometry of the boundary, U*,
p* are the displacement and the traction
vectors corresponding to the weighting field,
and U, p are the boundary values of the dis-~
placement and the traction, respectively.

To obtain a numerical solution the
boundary is divided into so-called constant
elements. Eq. (2) then becomes

v : Density
Hu= Gp eee (3) ¥ : Poisson’s ratio
oA : Lamé’s constants
Z : ;lfiscous giax:‘xping coefficient
in which H and G are complex coefficient 8 : ﬂﬁﬁigofﬂﬂii?gg
. : . [ : Incidence angle of seismic wave
matrices. Int?oduc1ng.prescr1bed bougdary W,.W; © Weight of foundation
values into this equation we can obtain un- Ii,fy i Moment of inertiz of foundation
N . Hgi .Hg: * Height of center of gravity of foundation
known values which enable the evaluation of D1 Dee ‘gﬂ?ﬁfﬁ‘? wgfﬁmﬂnwn
N . . . , B2 ¢ Half width of foundation
the impedance functions or the driving forces. L'  Depth of foundation
Dy : Distance between two foundations
Fundamental Solutions
Fig. 1 Description of the Model

The fundamental solution for this
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problem can be obtained by solving the equation
A+ pVV-u+ yV2u+ pa)zu- ionu+ £5'=0 cee (&)

where 8 is the Dirac delta function and f (=(p,q)) is the point source vector.
To account for wave propagation in the third direction it can be assumed that

n=2pV_IL V. =Viulp cee (5)

in which Vs is the shear wave velocity of the medium and L is the width of a
slice equal to the depth of the foundation. Eq. (4) can be solved by taking
Fourier transforms with respect to x and z. The resulting solution, which
corresponds to the Green's function for infinite domain, is as follows:

i
u (x,2)= —
s

[ LT b ¢ H‘ 2)(kr)}p+ a;%{ H () H{,”(kr)} q]

ank?l g 0
; 2 2 2 e Lgto
w @I — axaz[H( ()~ HY; (kr)} {6221'{2 (hry axzﬂg (kr)}q] (6)

in which, HO(Z)is the Hankel function of the second kind of order zero, and

B’= (w/cp)z— iw/D k= (wlc Y~ io/D . ¢ = VO 2plp. ¢=Vap

= O 2pin. D= pin. r=V2+ 2% a=VE— 1’ p=VE-k’ e (7)

Since we consider a foundation embedded in a semi-infinite soil or in
a finite layer overlying a rigid rock, it is convenient to find fundamental
solutions for Eq. (4) satisfying boundary conditions corresponding to our
problem. This is also done by the application of the Fourier transform method.
We have for a semi-infinite space

1 [% 1
u= —}EJ o m[ pP— a {(252 kz)e—az Zaﬂe_ &}{(26 k2\ "~ f- Zaﬁe_ ﬂr}cos(éx)
3 H

+ g&{— 28% P+ (26% KHe BY2ape Y- (262 1D #, }sin(gx)] d+ u (%= P+ u (x,2+ )

w= —— f z [p{{(2£ ke “_ 28% Y28 kAe Y 20 e Fsin(Ex)

nyk OF ®
2
-q %{we‘ =- 26~ K Byeape - 26’- kD ) eos(ax)] dé+w (52— P w @2+ )
= (262 kD' - 4o ps? 2o (8)
The fundamental solution for a finite layer overlying a rigid rock is given by
1 ® 1 —f_ J: az
—_ C. % B Dy s(&x)dE— q{— §(A;
2n}JOF @ — plifAge” ®+ Cpe™r BB e e} cos(&x)dE— gf: e
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+C,e=H if(B, e B—D e }sin(.sx)] dE+u (5= o (x2+ )

__I_.Jw__
- 2np oF}gS

- CVe“z)-f- i§B e By Dve!iz )}coS(rfx)J dé+w (x,2- i w (x,z+ f)

- pl-io(A e = Ce™) EBye™ Bt DeFlsin(Endé- g - (A e

F = 8a %% k9 (€ ap {26~ bY'— 4ap%}cosh{la+ PE)

— %+ apl2e- 13+ 40} coshila— BH) ' cee (9)

where Ay, By, .. are the coefficients which are the functions of the exciting
frequency, the elastic constants and the thickness of the finite layer. The
expression of the traction which is not presented here may be obtained from

the constitutive relatioms.

If we choose Eq. (8) or Eq. (9) as a fundamental solution no elements
need to be placed on the boundary except on the foundation-soil interface.

NUMERICAL RESULTS AND DISCUSSION
A brief comment is first given of the verification of the present method

of analysis. Then the effect of dashpots on the dynamic interaction of rigid
foundations is discussed. Parameters used in the calculation are summarized

in Table 1.

Verification of the Present Method

In order to verify the developments presented in the previous sections we
consider a simple application, namely, compliance functions of a rigid strip
on the surface of a half-space in plane strain (no viscous nor hysteretic
damping). Fig. 2 is a plot of the normalized compliance function in horizon-
tal translation. Also in the figure results presented by Luco et al. (Ref. 5)
are plotted. Poisson's ratio of 0.25 is ‘assumed. This figure clearly
exhibits the validity of the present method.

After Luco and Westmann

Effect of Dashpots +;%L o Present Method
Now we investigate the effect of dashpots.

To this end we consider first a rigid foundation Foo L \ R P B

placed on the surface of a half-space. Fig. 3 o

shows the dependency of normalized impedance fun- E imaginary Part

ctions on the nondimensional frequency ao (=wB/Vs) 810 |- R, "

while Figs. 4 and 5 provide the foundation input S R

motion, which corresponds to the response of a ’

massless rigid foundation due to a seismic wave, 0.0

and the tranfer function against‘the gar—field o0 MmﬁmiimnaFmginq h&Ls

surface response. Exact three-dimensional results

(Ref. 6) are also plotted in Figs. 3 and 5 as a Fig. 2 Verification of

comparison. the Present Method
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It is found from these figures that the

existence of viscous dashpots exerts a signifi- Table 1 ?arameters Used.
cant influence upon the dynamic characteristics in the Calculation
of a rigid foundation. The real part of impe- Dreom
dance functions moves upward and approaches to =
that of the exact three-dimensional solution. FES 6=0,30, 60°
The change of the imaginary part, however, depends

. T . . . Dr=20m Dp=40m
on the mode of vibration, i.e., translation or
rotation. Unfortunately the imaginary part of B
the rocking impedance is shifted apart from the
exact three—-dimensional solution by adding Dr=20m  H=80m Dr=20m  H=160m
dashpots. As a whole adding dashpots produces =g

its desired effect especially upon the horizontal
impedance. Foundation input motion is little
influenced in turn by the addition of viscous

77 7.
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dashpots. It may be understood as a result of
less interaction effect duie to the lack of the
foundation mass. Finally it can be concluded

Dp=20m Dr=120m

Dp=20m Dr=160m

that the response of the foundation due to a

. . . . . . By =By =40m Dr1=Dr2=0, 20, 40m
vertically incident SV wave is fairly improved. VisWa=3saa00c  L_=lh =2685x106m2
A relatively low peak level of the approximate Dr=c,120,160m  H=2, 80, 160m

three—dimensional solution may be resulted from

v=04
Vs=590m/sec

the over—estimation of damping in the rocking
impedance.
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Fig. 3 Effect of Dashpots on the Impedance Function
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Fig. 4 Effect of Dashpots on the
Foundation Input Motion
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Effect of Foundation Embedment

Next considered is the effect of foundation embedment. Analyses are
made of a rigid foundation embedded in a half-space. Fig. 6 is a plot of the
impedance functions and Fig. 7 shows the response of a foundation due
to a vertically incident SV wave. Though the actual values of the impedance
functions are changed by the addition of dashpots, a similar effect of embedment
is seen in both cases. The imaginary part of the impedance grows conspicuously
larger when the embedment increases, while the real part remains unchanged
except the rotational impedance. The effect of embedment is significant for
the foundation response, which is directly expected from the fact of the increase
of the imaginary part of the impedance function.

Effect of Underlying Bed Rock

The effect of the assumed rigid rock underlying a finite layer is demon-
strated on Figs. 8 and 9 in which the impedance function in horizontal direction
and the response of a foundation due to a SV wave are depicted. It is clearly
seen in these figures that the viscous damping dramatically reduces the fluctu-
ation due to the assumed rigid rock and that the results for H/B=4 almost
coincide with those for a half-space. This fact implies that viscous dashpots
are effective in removing a bad influence of an inevitably assumed artificial
bottom boundary in a finite element anlysis.

Effect of Adjacent Foundation

. —  Df/B=c®
BoldLine : Real Part ThinLine : Imaginary Part e De/B = 0.5
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Fig. 6 Effect of Foundation Embedment on the Impedance Function
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Attention is finally turn to the coupling effect due to the existence of
an adjacent foundation. Two identical rigid foundations embedded in a half-
space subjected to a vertically incident SV wave are considered. Diagonal terms
of the impedance matrix are presented in Fig. 10. The response of foundations
due to a vertically incident SV wave coincides with each other and is illust-
rated in Fig. 11. The fact that the effect of an adjacent foundation is pro-
minant on the real part of the horizontal impedance and the imaginary part of
the vertical impedance implies the great contribution of lateral soils to
these components. Another remarkable feature observed is a strong fluctuation
due to the existence of a second foundation and the fluctuation becomes more
rapid in conjunction with decreasing amplitudes when the distance between two
foundations increases.

CONCLUSIONS

1) The dynamic characteristics of a rigid foundation are fairly improved
by adding dashpots to the ground in two dimension.

2) The imaginary part of the impedance grows larger when embedment increases,
while the real part remains unchanged except the rotational impedance.

3) The fluctuation of the response due to the existence of an underlying

rigid rock or a second structure is dramatically suppressed by adding
dashpots.
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Fig. 10 Effect of an Adjacent Foundation on the Impedance Function
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