A SIMPLE MODEL TO ILLUSTRATE THE SIGNIFICANCE OF
FOUNDATION FLEXIBILITY IN SOIL-STRUCTURE INTERACTION
PROBLEMS

G. B. Warburton (I)

SUMMARY

In some recent work on the effect of foundation flexibility the
expected multiple resonances were not obtained because authors either
neglected the foundation mass or limited the range of excitation
frequencies. Also damping in the foundation was neglected. In this paper
a simplified model, which consists of a simple structure and a flexible
foundation on an elastic layer, is investigated to demonstrate the depend-
ence of natural frequencies on the stiffness and mass parameters and show
that damping in the structure, foundation and layer must be included to
obtain meaningful resonant responses.

INTRODUCTION

In classical work on soil-structure interaction (SSI) the foundation
is represented as a rigid mass of circular or rectangular plan form.
Its steady-state response to harmonic excitation in a single mode
(e.g. vertical translation) is similar to that of a single degree-of-
freedom system. When a n-degree-of-freedom model of a structure is added,
the combined system has (n+ 1) resonances. Recently several authors have
considered foundation flexibility, treating the foundation analytically
or by the finite element method as a plate. Even in the absence of a
structure an infinite spectrum of resonances would be expected; however,
as sdme authors have either neglected the foundation mass or limited the
range of excitation frequencies, multiple resonances have been reported
infrequently. The author (Ref.1) has given a survey of this recent work.
He also investigated a simplified model, which consisted of a flexible
beam and an elastic layer, in order to demonstrate the effects of various
parameters on resonant frequencies and the significant effects of both
foundation (beam) and layer damping on resonant response. In Ref.1 no
attempt was made to model a structure. The purpose of this paper is to
add a single degree-of-freedom system, which represents a simple
structure, to the foundation model of Ref.1 and investigate the effects
of structural and foundation parameters on resonant frequencies and
amplitudes.
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THEORY

Figure 1 shows the simplified model. The mass m and spring of
stiffness k (with associated hysteretic damping T) comprise a single
degree-of-freedom representation of the structure. The uniform beam of
length L, mass per unit length pA and flexural rigidity EI (with assoc-
iated hysteretic damping u) is an idealization of the flexible
foundation. The elastic or Winkler layer of stiffness C per unit length
(with associated hysteretic damping n) idealizes the soil or elastic
half-space. The excitation is the harmonic force pe®’ which is applied
to the mass m. This form of excitation has applications outside earth-
quake engineering. For the latter a transverse acceleration, which is
applied to the base HJ in Fig.1, would be more representative; however,
the method of this paper cannot deal directly with this type of input.

The following non-dimensional parameters are used

stiffness ratio (beam to layer), B = EI/CL*
stiffness ratio (structure to layer) » = k/LC
mass ratio, ¢ = m/pAL

frequency factor, Q =plw?/C

dynamic magnification factor (DMF) for the relative displacement of the
mass m (i.e. the elastic distortion of the structure), R =(k/P)|y-V(o)|

Using the symmetgy and considering only 0< x < 3L and putting
v(x,t) = V(x)e*™" the beam equation is satisfied if

V(x)= B, sin ATx o+ B, cos Vx o+ B, sinh AP o+ B,cosh Atx (1)

where, due to the presence of the damping, 2t is complex and is related
to the frequency factor Q by

B(1 + ip) (ATL)* = Q@ - (1 + in) (2)
For small damping this is approximated as

L o= - i { =1

AL o= AL [1 - 3i{ ETEVAR +u}] (3)

where X is real and B(AL)* = Q - 1. These equations apply forQ > 1, i.e.
for frequencies greater than the natural frequency of a rigid beam on the
elastic layer. (Solutions for @ < 1 will be given later.)  Using the
equation of motion for mass m, which relates y to V(o)elwt, applying
the boundary conditions at x = o and x = 3L and approximating trigono-
metric and hyperbolic functions of complex agreement in the manner of
Refs.2 and 3 [i.e., if % A*L = IAL-ielL, where e<<1, sin (IA*L)

= sin (2AL) - ielL cos(3AL)etcl, the following results are obtained.

Natural frequencies of the system are obtained from the roots of
16Ba® (1-Qd/ %) +Qb Fy /F, = o (4)

where F;, = 1 + cosacosha, F, = cosasinha + sinacosh o, o = #AL.
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At resonance, given by a root of equation (4), the DMF for the relative
displacement of the mass m

R= (1 -04/0)7 1 - 4iz| (5)
where 27 = (1-G)u = (3+G)p . Ly /n (6)
a-1 T-qg/x°

G =a F;2/F,F, and F, = cosa + cosh a

For all values of the parameters B, » and¢ there is one natural
frequency for which Q< 1; the resonant response at this frequency is also
of interest. 1In this case the solution of the beam equation with damping
terms included is

V(x)=B;sin 6 x sinh 6¥x + B,sin 6 xcosh 87x +B, cos 8"x sinh@'x
+ +
+ B,cos @ x cosh 8'x (7)

where 6 is complex and is related to the frequency factor Q by
YB (T+ip) (6L)* = 1 + in - @ (8)

Using a small damping approximation, similar to equation (3), and
proceeding as in the earlier case, natural frequencies are obtained from
the roots of

6UB {3(1 -QYxa)-Q F,/f= 0

where ¢= 16L, 64B ¢*= 1-Q, f,= cos? ¢ + cosh® ¢,
f,= sin ¢ cos ¢+ sinh ¢ cosh ¢.

The DMF at resonance (Q=Q,, where , is the root of equation (9)) for

the relative displacement of m 1is given by equation (5), provided that

G 1is redefined in terms of ¢ as G = $ f,2/f,f, , wheref, = 2cos ¢cosh¢.

In order to use equation (5) for resonant response, the damping terms n,

T ani p must be small in magnitude and also small compared tol1-n¢/xl and
1- Q1.

RESULTS

In Figures 2 and 3 the natural frequency parameter  (=pAw 2 /C) is
plotted against the stiffness ratio B for two sets of values of the
structural parameters ¢ and x. For stiff beams (large values of B) the
system reduces to a two degree-~of-freedom system and in all cases the
curves for Q; and Q, are asymptotic to these values.

Considering the symmetric modes of the beam on the elastic layer
(without the structure), the natural frequencies are given by &' = 1
(rigid body mode), Q,' = 500.58+ 1, Q4'= 146208 + 1.These frequency factors
are shown in Figure 2(¢ =0.1,% = 1) by broken lines.Consideringthe frequency
factors of the complete system (full lines), Q, lies slightly below Q)
for low values of B, but for high values Q, approaches the higher of the
two frequency factors of the limiting 2 DOF system. Frequency factor Q,
lies slightly below Q3" for low values of B, but is asymptotic to the
curve for Q,' for high values. In Figure 3 for a heavier, stiffer
structure (¢ = 1, » = 10) the curves for Q ' would be as in Figure 2,
but are not shown. For this larger structure the natural frequency factor
curves p are not close to curves for Qlf , except that for large
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values of B Q;isagain asymptotic to the curve for Q,'.

In Figures U4 and 5 the DMF at resonance for the relative displacement
of the structural mass m 1is plotted against B; the integer r indicates
whether the first, second or third resonance is being considered. The
four different types of line indicate the resonant response when only
layer damping exists (n = 0.01), only structural damping exists (£=:0.01),
only beam damping exists (u=0.01), and all three dampings co-exist
(n=C=p=0.01). In this manner the relative importance of the different
damping mechanisms is illustrated. For ¢ = 0.1, » = 0.1 (Figure 4) layer
and structural damping are important at Q, and Q, for moderate and large
values of B; this is to be expected as the corresponding modes have rigid
body characteristics. As B increases, the third resonance:is dominated
by beam damping,asthis isa predominantly flexural mode with the layer and
structure having little effect. For ¢ = 1, » = 10 (Figure 5) the
behaviow of the resonant amplitudes.is more complex, particularly in the
intermediate range of B from approximately 7.10-3 to 5.10‘2, where
Figure 3 shows coupling phenomena in the natural frequency curves for Q,
and Q5. The first resonance is dominated by the layer damping; the
second resonance is dominated by layer, beam and structure damping for
low, intermediate and high values of B respectively; the third reso-
nance is dominated by beam damping for low and high values of B and by
structure damping for intermediate values.

Although all the plotted results relate to damping values of 0.01,
resonant responses for other small values of damping can be obtained by
scaling, provided that the imaginary term in equation (5) >>1, as Z is
inversely proportional to damping.

CONCLUSIONS

Allowance for the foundation (beam) flexibility (i.e. B finite)
introduces additional natural frequencies (Q_ for r>3). If the beam is
assumed to be rigid (B—®), the system has two asymptotic natural
frequencies, which would be represented by horizontal lines on such plots
as Figures 2 and 3. If the upper of these lines intersects the curves
for Q, ', (the natural frequency factor for the fundamental symmetric
flexural mode of the beam on the layer), coupling effects occur as
demonstrated in Figures 2 and 3.

The response of the mass relative to the beam at resonance is the
most important response parameter. By plotting resonant response for
each of the three damping mechanisms (structure, beam and layer) acting
separately and for all three acting simultaneously, it is demonstrated
that ranges of the stiffness and mass ratios exist for which each damping
mechanism is dominant. When coupling effects exist in the frequency
spectra, there will be similar complex behaviour in the interchange of
dominance between damping mechanisms.

Although the results cannot be applied directly to practical
problems, it may be concluded that for structure - flexible foundation -
soil problems all flexibility and mass effects must be considered to give
complete frequency spectra; in addition all damping mechanisms must be
included to give proper values of resonant response. In this context, as
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pointed out in Ref.1, authors who neglect the damping in the plate, when
considering the interaction of a flexible foundation and an elastic half-
space or stratum, may obtain erroneous resonant values.

REFERENCES

G. B. Warburton, Simple models for problems in foundation dynamics,
Chapter 6, of Numerical Methods in Coupled Systems (editors R.W.Lewis,
E. Hinton and P. Bettess), Wiley, Chichester, 1983.

J. C. Snowdon, Vibration and Shock in Damped Mechanical Systems,
Wiley, New York, 1968.

G. B. Warburton, The Dynamical Behaviour of Structures, 2nd edn,
Pergamon, Oxford, 1976.

—{; Uniform beam; mass/

unit length PA; flexural
Rt hL rigidity E1

>l

)
C R T Y

H | ] Elastic layer; stiffness
Y C/unit length

Fig.1. Model system. Hysteretic damping constants: spring, C ;
beam, p; and layer, n.
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Fig.2. Natural frequency factors Q, versus
stiffness ratio B for ¢ = 0.1, » = 1,
Q {lr'.
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Fig.3. Natural frequency factors Q. versus
stiffness ratio B for ¢ = 1, » = 10.
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Fig.4. DMF for the relative displacement of mass m at
the rth resonance, R, versus stiffness ratio g
for ¢ = 0.1, » = 0.1.
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Fig.5. DMF for the relative displacement of mass m at
the rth resonance, R, versus stiffness ratio B
for ¢ = 1, » = 10. (For key see Fig.4).
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