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SUILIARY

This paper describes the numerical procedures to analyze the dynamic
soil-structure interaction of the elastic base mat resting on the surface of
rnulti-layered strata. There were no previous methods proposed to analyze
the dynamic soil-structure interaction under above-mentioned conditions.

The effects of elastic deformations of base mat and the existence of strata
on the dynamic soil-structure interaction are shown through solving a
representative example,

INTRODUCTION

This paper describes the numerical procedures to analyze the dynamic
soll-structure interaction (DSSI) of the elastic base mat restinz on the
surface of multi-layered strata. The effects of strata and elastic
deformations of base mat on DSSI will be discussed. DS3SI have direct
effects on the dynanic characteristics of rigid structures such as the
nuclear reactor buildings (R/B). The precise estimates of these effects
inevitably require to investigate the aseismic safety of R/B. ilany methods
(Ref.1,2,3,4,5,6) have been proposed to estimate tihie effects of DSSI. But
most of these contain the following analytical assumptions. Soil is a
semi-infinite isotropic homogeneous medium, and the base mat of /B is
perfectly rigid or the contact pressures between the base mat and soil are
assumed a priori, The numerical results performed under above-mentioned
assumptions are considerably different from experimental results of i/B.
The real soil underlying R/B consists of multi-layered strata that have
different physical constants. The existence of strata and elastic defor-
mations of base mat may have an important role for DSSI.

HMATHEMATICAL FORMULATION

The integral equations must be solved to analyze the soil-structure
interaction problems, These equations have kernels which express the
relations between point loads applying on the surface of soil and displace-
ments due to these loads. The kernels are usually named by Green's
functions, Green's functions for a vertical load can be introduced as
follows, In the case of a horizontal load, these are formulated in a
similar manner. The soil is assumed to be horizontally multi-layered
strata., Each stratum is an isotropic homogeneous medium with hysteresis
type dampings. The geometric configuration of soil and coordinate systems
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are siown in Fiz.1. The general solutions of wave propagation equations for

n—th layer are expressed by Eq.(1l).

[u:™(?, Zm), u,™ (7, zLm,)v 0™ (% Zn), Tre™ (7, Zn) IT
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in waich, J )=The first kind of Bessel function of k-th ordger

#=wr|Cry, En=02n/Cp, ji=0/Cr, w=circular frequency
Cpn= S-wave velocity of first stratum
u,= shear rigidity of first stratum
Matrix elements of right hand of Eq.(1l) are given by (2).
Wm=QmBm
where Wm= {ﬁrm(zm)v ﬁzm<§m)v azm(Em)r ?:rm(jm)} T
Bn= {~4mijcmv B, jxDm}
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An, By, Cp, D= undetermined coefficients

E,=exp(~&nZn), E,=exp(—Fnin), E;=exp(@nin), E,=exp(BnZn,)
&m.:‘/ez"émzﬂngpm’ Em=~/$2_’c~ngsm: Cm=cnlcrm, nm=CTm./CLm

B = | s g:m.=£1+iu,m/llml gpm=E1+i(2m'+2#m’)/(zm‘1'2!.11",)]_1

Cym= P-wave velocity of n-th stratum
Um+ip'm= complex rigidity of m-th stratunm

Aa+2pm)+i(An' +2 4m’) =complex rigidity of P-wave of m-th stratum

And now, for the value Wn, Qm of top of m-th stratum and bottom of m-th

stratum, following notations are introduced.

Wa.n-1=Wnizu-o, Won.n=Wnise=aa
Ca=Qmizu-00 Dn=Qnizn=dn
viere dn=w0Hp/Cy,
Then next relation is obtained.

Byu=JyWi.
where Jn=Cn+" Dy Cy*-Dy_,-Cy_,"--D,-C,}

And dividing Eq.(5) into two part, Egq.(5) reduces to Eq.(6).

BN#II =JN(1) JN(I) 'Wl'o(d)
BN-H” JN(O) JN“) Wl.u(’)
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Jecause #+l-th stratum is infinite medium in z-direction, the following
condition holds,

By.,/'=0 (7}
Tnen

Wi @=TW, @ (8)
where SR ROLS MO

Eq.(8) implies that displacements of surface can represent stresses of
surface, The boundary conditions at surface expressed in term of stress
components are:

P L o
15"]?;-0:_'2’;31”‘]12’[’ fJo(fi)de (3)
1TeriFm0=0 (10)

Then The response displacement of surface in case of the point load
applying on the surface of soil is written as follows.

Pt [+ ; (11)
1m 3
urt=—ge [ Tugd Rt
Finally, the Green's function of a vertical load is given as
G yié ) =u (@£, Y= 1p= (12)

SOLUTION METHOD OF SOIL-STRUCTURE IHTERACTION

When steady state stress (7)) ¢™ gpplies on the surface of base
contact region S, the response displacement w(zy)e™  of the surface is
represented by using the Green's function G(z,¥;4 7 as in Eq.(13).

w(z, y)et= f G(z y; & (e Meetds (13)

If the region S is discretized into subregion ds , Zgq.(13) is transformed
to
{w;}et =[Gy 1{ Pr}et (14)

Suppose matrix [K;s]is an inverse matrix of [Gi], the matrix[Kilgives
dynamic stiffness matrix of soil which combines the force vector {F;} and
the displacement vector {ws} .

{Pryert =[ Ky {ws}et (15)

On the other hand, the dynamic characteristics of the base mat is
expressed as follows.

[M{u}+[K]{u}={F} (16)

where [M] is mass matrix, [K] is stiffness matrix,
{#} is displacement vector, {F} is external force vector.
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Consequently, the interaction analysis can be conducted by combining
the matrix of base mat and soil,

[IMYa}+ ([ K])+[KuD{u}t={F} (17)

NWUMERICAL CALCULATIONS AD DISCUSSIONS

The dynamic behaviors of a reinforced concrete base mat subject to the
harmonically vertical ground motion are analyzed.
That is, external force vector:

{F}=[M){I}ae"
{I}= unit vector

&= earthquake acceleration, in this case &=lgal

The base mat is a square with 80m side length and 7m thickness. One fourth
of soil-base mat system is considered according to its symmetry. Two kinds
of soil conditions are considered as shown in Fig.3. The case 1 soil
consists of three strata. The case 2 soil is a semi-infinite homogeneous
isotropic medium with equivalent s-wave velocity to case 1 soil. The
physical constants are summarized in Table 1. In regard to damping, the
base mat has the complex rigidity with 5% damping and soil of both cases 3%
hysteresis type damping.

Fig.,4 to Fig.9 show the frequency transfer functions of each part of
base mats., In those figures, real line represent of the result of case 1
soil condition, and dot line represent of the result of case 2 soil condi-
tion., The discrepancies of two curves are caused by the existence of
layered strata. While the base mat on case 2 soil has smooth transfer
functions, these functions for case 1 soil became curves which have a peak
at nearly 4,.5llz. This peak reflects the dynamic characteristics of layered
strata, The phase angle curves for case 1 soil is very complex.

To investigate the elastic deformations of a base mat on case 1 soil,
the transfer functions of each point are summarized in Fig.l1l0 and Fig.ll.
The functions are remarkably different. Therefore, the base mat does not
vibrate as a rigid body, but the elastic deformations considerably occur.

Fig.l2 to Fig.l15 siiow patterns of response displacement of the base mat
at the beginning ( t=2nrlw ) of steady state excitation. They show that
displacements of base mat differ depending frequency and the existence of
soil layers,

Fig.16 to Fig,1l9 show patterns of reaction stresses of the base mat at
the beginning of steady state excitation, Similar to response displacement,
reaction stresses of the base mat differ depending frequency and the
existence of soil layers,

CONCLUDING REMARKS

The solution method is presented to estimate the dynamic behaviors of
base mat resting on layered strata., The followings can be drawn from the
present numerical results.

(1) The elastic deformations and contact pressures for a base mat resting
on layered strata are considerably different from those on non-layered
stratum, The numerical calculation taking into account of layered strata
nust be performed to precisely estimate the dynamic behaviors of base mat.
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(2) The base mat induces the large elastic deformations. Therefore, the
conventional methods are not enough where the rigid condition of base mat or
the contact pressure are assumed a priori.
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Fig.1 COORDINATE SYSTEM
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Fig.2. BASE MAT 1/4 MODEL
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Fig.3 SOIL MODEL

TABLE 1 PHISICAL CONSTANTS OF SOIL

STRATUM| Cim Vnm Prm Hm

1-th 500 msec 0.4 2.0 tonm 40m

Casel 2-th 1000 m sec 0.4 2.0 ton/m’ 40 m
3-th |2000m sec 0.4 2.0ton,/m’
LCase? |HALESPACE | 800mmsec| 0.4 2.0 ton,/m’
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Fig. 10 TRANSFER FUNCTION (case 1)
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Fig.5 TRANSFER FUNCTION

Fig.7 TRANSFER FUNCTION

Fig.9 TRANSFER FUNCTION

Fig.11 TRANSFER FUNCTION (case 1)
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