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SUMMARY

This paper presents an analysis of a dynamic behavior of an elastic
foundation embedded into a visco-elastic layered medium. Incident, harmonic
SH waves are supposed to propagate obliquely upwards. The problem is
formulated by means of boundary integral method and numerical results are
obtained in the sense of least square. It is pointed out that scattering and
diffraction of incident waves increase to a deeply embedded foundation and
that displacement response of a surface layer is largely affected by a deep
foundation.

INTRODUCTION

In recent years, it has been accepted that the evaluation of soil-
structure interaction phenomena is important for the analysis of structural
safety for earthquakes. There were reported many researches dealing with
soil-structure interaction through various approaches. However, as to an
embedded foundation, relatively a small number of results(Refs. 1 to 4) is
only available on account of difficulties in theoretical analysis.

In this paper, an elastic foundation embedded into a visco-
elastic, layered medium is supposed. The foundation which is infinitely long
to the antiplane direction is subjected to incident, plane, harmonic SH waves
propagating obliquely upwards to the surface. The analysis is treated as a
two-dimensional case and is carried out based on the boundary integral
method(Ref. 5). The problem is formulated in terms of a set of Fredholm
integral equations of the first kind and integrations are made along paths
outside the boundary in order to avoid the singularities of integral(Refs. 6
and 7). Using Green’s functions represented as solutions for a point source,
boundary conditions are satisfied discretely at finite points on the boundary
in the sense of the least squares.

MATHEMATICAL MODEL AND METHOD OF ANALYSIS

An elastic foundation embedded into a layered medium subjected to
incident SH waves is shown in Fig. l. Symbols in the figure mean the
following quantities: P; is mass density of medium denoted by j, ( j =1, 2, 3
), U? ( =y, + y7 ) is complex shear modulus, Y is incident angle of SH waves,
b and D ard half width and depth of foundation,. H is thickness of surface
layer.
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Incident field of visco-elastic, layered medium for plane SH waves is
represented with omission of time factor elwt as follows:
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And c; and k; means shear wave velocity and wave number, Q¢ means non-
dimenSional %requency, Y” means incident angle in a surface layer, d is a
coefficient of viscosity.

Incident waves are diffracted by the presence of an embedded foundation.
Diffraction field can be expressed as a single layer potential at curves Cl
and C3 which are defined in the foundation and in the layered medium
respectively shown in Fig. 2. If 0;(r,) and 03(r0) are assumed as the single
layer densities on Cl and C3, respectively, diffraction field is represeted by
use of Green’s functions for each medium. And displacements u;, ugy and ug of
surface layer, half space and foundation are expressed in eq. (2) as total
field defined by sum of incident field and diffraction field.

i, d_ i
vy uy + u; = Uy + fchl(r,rO)oi(ro)dsl
u, = ol +ud = ot [ 6 (r,r. )0, (r.)ds
2 2 2 2 Ci 2°2°0°°1Y0 1
u, =’ = [. 6, (r,x )0, (r,)dS 2
37 "3 7 Jg,yt3 Tl 031 d5, (2)

where Gl(r,ro), Gz(r,ro) and G3(r,r0) are Green’s functions for a layered
medium and a half space and expressed in the following equations:
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Fig. 1 Mathematical Model Fig. 2 Path of Integration
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and Hy " (.) denotes Hankel’s function of the second kind and order zero, Ty
xo,zo) and r(x,z) are position vectors of a point of a source and of an
arbitrary point in the medium..

Substituting these equations into continuity condition of displacement
and stress at the boundaries of a foundation, a surface layer and a half
space, the Fredholm integral equation of second kind are derived for the
unknown single layer densities Gl( 0) and 9 (rO) But the solution of these
integral equations can not be obtained ea511y, a suitable numerical procedure
is used here. The single layer densities are assumed at points of an adequate
number on the path of integration. And the condition of continuity of
displacement and stress is satisfied also at points of a finite number on the
boundary. Then the problem is deduced to simultaneous algebraic equations and
numerical solution is obtained for less unknown quantities than the number of
the continuity condition with the least square method. Substituting the
numerical solution of Ol(rO) and O4(r,) into eq. (2), displacements of a
foundation, a surface layer and a halt space can be evaluated.

‘RESULTS AND CONCLUSIONS

In Figs. 3(a) and 3(b), Green’s function for-a layered medium is shown
with respect to vertical coordinate z.. Point Q denotes a source point of a
harmonic SH wave. A solid line and a broken line represent responses of a
half space medium ( U =1 ) and an elastic layér with depth H = 4 on a rigid
base ( |t = «» ), respectively. Real part of numerical solution seems to be
extremely large at point Q nevertheless imaginary part is shown as a smooth
curve. Fig. 4 shows displacement response of point P defined in the figures
subjected to a point source at Q to the nondimensional frequency. Natural
vibration characteristics of a surface layer are shown obviously as several
peaks and dips in the frequency response for a 1arge ratio U of shear modulus
of a surface layer to that of a base medlum.

Numerical solution of displacement response of an embedded foundation and
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a layered medium along z axis ( x = 0 ) are shown in Figs. 5(a) to 5(d).
Dotted curve represents response of a layered medium with no foundation ( D =
0 ), namely the incident field. For a shallow foundation ( D < 1.0 ),
diffraction and scattering of incident waves by a foundation have a little
effect on response of a surface layer. However, a deep foundation causes a
large scattering effect in a surface layer, displacement response in a base
medium of a half space is affected scarecely. These features can be seen
commonly in both real and imaginary parts and for different frequencies. Fig.
6 shows displacement response at the center and edge of the surface of
foundation and on the surface of layer near the foundation ( x = 2 ) with
respect to frequency of incident waves. In lower frequency range,
displacement amplitude of a foundation is as large as that of a surface layer
and have a resonant peak corresponding to the fundamental natural vibration of
a coupled foundation-layered medium systems. On the other hand, response of a
foundation for a higher frequency is suppressed and shows no evident peak
yet response of a surface layer varies with frequency.

Next figure shows a comparison of frequency response with depth of
foundation at the center of foundation surface in Fig. 7(a) and on the surface
of layer near the foundation ( x=2 ) in Fig. 7(b). A parameter Ms means the
ratio of shear modulus of foundation to that of surface layer. Although the
response of a shallow foundation ( D < 2.0 ) is largely affected by the
frequency characteristics of a surface layer, vibrational characteristics of
foundation itself or of a base medium of a half space seem to come out for a
deep foundation (D > 4.0 ). On the surface of a layer near the foundation,
vibrational characteristics of a surface layer is predominant widely without
partial exception for a deep foundation.

Figs. 8(a) to 8(c) represent influence of depth of surface layer on the
frequency response at the center of surface and bottom of foundation and on
the'surface of a layer near the foundation. Dotted curves mean the special
case D = H = 2.0, when the bottom of foundation contact with a base medium of
a half space and response seems a peculiar one. Resonant frequencies of a
foundation and a surface layer decrease with depth H of a surface layer.

As regards the incident angle of SH waves, comparison of response at the
center of surface of foundation is represented in Figs. 9(a) to 9(c) for D = 0
to D = 2,0, respectively. Amplitude of foundation displacement and effective
input motion to the foundation become small with the angle because of the
energy dispersion by the scattering of incident waves by the foundation. And
increase of incident angle causes generally the resonant frequency of higher
modes large. Response of foundation is decreased in high frequency range
irrespective of the incident angle.

Fig. 10 represents distribution of displacement response of surface of a
foundation and a surface layer. With increase of incident angle, amplitude of
displacement becomes large in front of the foundation and small at behind of
it. And it is emphasized by a deep foundation in Fig. 10(b). These phenomena
can be considered to be an amplification of response by the energy
accumulation and conversely an isolation of input motion by the presence of
foundation. In Figs. l1(a) and 11(b), distribution of response amplitude is
shown along the surface and the boundary of foundation at the layered medium.
The curves are corresponding to a foundation embedded in a half space (U =
1.0 ) in a layered medium ( p = 6.0 ) and in a surface layer on a rigid base (
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U = o). Although response increases generally to the free surface (z =0)
along the vertical boundary of a foundation, variation of shear modulus of a
layered medium seems to have a little effect on response distribution.

From the results abovementioned, concluding remarks are pointed out as
follows:

1. A deeply embedded foundation causes large scattering and diffraction
of the incident waves, and affects displacement response distribution of a
surface layer near the foundation.

2. Though responses of the coupled foundation—layered medium system are
amplified evidently at the fundamental natural frequency, natural modes of the
higher order seems to be obscure.

3. Responses of the coupled system decrease for a large incident angle to
the vertical plane because of the energy dispersion by the foundation.
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