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SUMMARY

This paper presents a new method of time domain analysis for
structure-foundation dynamic systems subjected to time-~dependent seismic
force. The method does not hypothesize the types of elastic waves that
may dominate in particular problems. Linear and nonlinear problems are
acceptable. Numerical results for linear problems are shown to have a
good agreement with those by an existing method in frequency domain analy-
sis,

INTRODUCTION

Accuracy of response analysis of structure on a semi-infinite foun-~
dation depends on the treatment of unboundedness of the foundation. A
well-known approach is the use of Fourier transform. But this is appli-
cable to only linear problems. The proposed method is a finite element/
difference hybrid scheme and uses a direct numerical integration in the
time domain. The key is the finite difference part. It computes the
radiation of elastic waves into infinity. k

PROPOSED SCHEME
We partition the entire domain of structure-foundation system into

the following two zones: Zone A which covers the structure and its near-by
portion of foundation, and Zone B which covers the remainder portion of

foundation. Zones A and B must overlap each other with one mesh width.
We call this overlap area the interface boundary, and denote it by Interface
Irp- The scheme consists of three computational blocks called the

near-field block, the far-field block, and the interface block.

The near-field block computes the response of Zone A by using the usual
finite element technique. Thus for elasticity problems, the equation to
solve is, in its general form, as follows. N
2
i S5ev1 + [e1dvy + K1V} = (£} w
dt

where [M], [C], and [K] are the mass matrix, the damping matrix, and the
stiffness matrix, respectively, and {V} is the unknown vector of nodal varia-
bles (displacements). The right-hand side {f} is the external vector. Here
we note that {f} is to contain the unknown variables on Interface Ipg.
Assuming that {f} at times t and t+k (k: time increment) are known, we inte-
grate (1) using Newmark's B scheme (Ref.l). ( The interface block supplies
components of {f} on Ipg.) For modification to other types of problems
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such as the dam-reservoir system to be dealt with in Example 3, we combine
with (1) the finite element equation representing the governing equation of
concern, together with the condition of interaction with the elasticity
domain. For example, the governing equation of reservoir water in Example 3
is the wave equation of the potential function, which interacts with the dam
surface and with the foundation (reservoir bed) through the continuity of the
normal velocity and pressure.

The far-field block computes the response in Zone B. The detail is as
follows (Ref.2). We write the equation of elasticity as a first order
hyperbolic system using the velocity variables and stress variables, then
apply to it a transformation of coordinates that maps the unbounded domain

into a rectangle through the integral relation
]

x'! z
= dg ' = dc_ -2 <z'<
X Jo a(8) for |x ]< lx and z Jo 5 (2) for lz z'<0 (2)
where x and z are the coordinates before transformation, and x' and z' are
those gqfter transformation. Figure 1 shows the zoning of the entire domain
after transformation. The denominater a(-) ( and b(+) as well ) must satis-
fy that (i) it is unity within Zone A, and (ii) it vanishes when x' approaches
tzx so that the integral diverges to + infinity. The resulting equation is
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3
where p is the mass density, A and m are the Lamé coefficients, u and w are
the velocity variables, and ¢, T, and o are the stress variables. ( If p,
A, and u depend omn (x,z), then they havé to be expressed in terms of (x',z').)
We solve this equation by Lax-Wendroff differencing technique (Ref.3), which
has been developed for computation of shocks in gas dynamics problems.
Assuming that the values of the unknown variables are given at time t in
Zone B and on Interface I,p, we can obtain those at time t+k inside Zone B.
For the dam-reservoir system , we solve simultaneously the wave equation
which is written in the form of hyperbolic first order system for the pres-
sure and two velocity variables.

The interface block relates the variables of the above two blocks across Iup
at each time step. In our computer program, we employ quadrilateral linear
elements for Zone A. Thus, the task of this block is as follows.
(I) From Zone B to Zone A: Numerical line integration of stress variables
to yield the equivalent nodal forces.
(IT) From Zone A to Zone B: Numerical differentiation of the nodal displace-
ment variables to yield the stress components.
Figure 2 shows the entire scheme. In the scheme, the above three blocks are
invoked successively within each time step. ‘
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EXAMPLES

Fxample 1. Semi-infinite foundation without structure.

We solved this problem when the foundation undergoes a harmonic
uniform loading. Figure 3 gives the equivalent stiffness for vertical
loading. This value is obtained from those computed results in which the
transient response has decayed out from the near-field portion of foundation.
(The same principle will be applied to Examples 2 and 3 also to obtain the
frequency response.) For comparison we put in Fig. 3 the theoretical value
by the method of Fourier transfrom (Ref.4), together with the one by the
finite element method with transmitting boundary in the frequency domain
(Ref.5). ( In the following, we shall call the latter method the transmitting
boundary method. We put a viscous boundary beneath the finite element model
of foundation to absorb the vertically scattering wave components when we use
this method.) The results by these three methods show a good agreement.

Example 2. Effect of embedment of a structure.

We solved three cases of embedment, as shown in Fig. 4, when the struc-
ture undergoes the vertically propagating sinusoidal S-wave. Figure 5 gives
the magnification factor of acceleration at the top of structure. Figure 6
shows a transient profile of the acceleration field in our extreme cases of
embedment, i.e., Cases I and III, when the acceleration reaches its maximum
at the top of structure. Apparently the acceleration induced in the struc-
ture decreases considerably as the depth of embedment increases. We remark
that when a slip boundary characterized by Fig. 7 is assumed between the
basement and the foundation, the acceleration and stresses induced in the
structure are reduced further.

Example 3. Gravity dam.

Figure 8 shows the geometry of a gravity dam. We solved this problem
under empty and full reservoir water conditions. Figure 9 is a profile
of acceleration field of dam in the case of full reservoir water due to the
vertically propagating sinusoidal S-wave, and Fig. 10 gives the distribution
of hydrodynamic pressure on the dam surface. The results appear reasonable.
According to our preliminary computation in the limiting case of rigid dam
on a rigid foundation (reservoir bed), the pressure distribution on the dam
surface agrees well with the well-knwon Westergaard formula (Ref.6) within
5% error, if the excitation frequency is low, typically in the range of below
3 Hz for our geometry. Figure 11 shows the time history of acceleration at
the top of dam under the full reservoir water conditionm. Figures 12 and 13
give the magnification factor of acceleration at the top of dam under empty
and full reservoir conditions. We again compare our results with those by
the transmitting boundary method. The agreement between the two is good.

CONCLUSION
We have developed a method of time domain analysis for structure/found-
ation dynamical systems. The radiation of elastic waves is dealt with

through the use of the coordinate transformation and the finite differencing
technique for shock computation.
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For linear problems, we have shown that the results agree well with those
by the transmitting boundary method. Because of the construction of our
algorithm, the extension to nonlinear problmes is straightforward as mentioned
in Example 2. Further, we remark that irregular foundation problems and
the quasi three-dimensional problems as well are simply variants of what
have been presented here.

We do not anticipate theoretical difficulties in the extension to truly
three~dimensional analysis. We are investigating the problem of accracy
and efficient use of computing resources for this extension.
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