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SUMMARY

This paper presents a procedure to formulate and solve theoretically the
dynamic interactions of soil and liquid-tank system subjected to earthquake
excitations based on Rayleigh-Ritz method. Considering the complex stiffness
of the foundation and the tanks as a thin elastic circular cylindrical shell,
the solution of boundary value problems including the sloshing effects for the
internal pressure is presented as the superposition of the elastic, transla-
tional and rocking pressures, respectively. The interaction forces are
considered as the generalized forces and the equations of motion are expressed
by several unknowns using the eigen vectors of rigid foundation system for the
displacements.

INTRODUCTION

Sufficient attention should be given to the dynamic interactions of
liquid-tank-soil system. The dynamic analysis of the system by F.E.M. has
been recently developed, but, using F.E.M. for the analysis of this
system, a large number of freedom are necessary in many cases on account of
discretization of liquid-tank-soil system by finite elements. To overcome
this problem, the substructure method such as that which A.K.Chopra et al.
(Ref.1) have recently presented for the analysis of gravity dams may be
effective. But for the analysis of circular cylindrical tanks, as the assumed
displacement functions could approximate sufficiently the actual displacement
mode because of simplicity of the shape, the dymnamic interaction forces would
be obtained explicitly as the impedance functions to tanks.

Rayleigh-Ritz approach to liquid-tank-soil problem is able to present
the interaction forces as generalized forces impedance functionms, whic? are
obtained in the explicit forms using the assumed displacement functions.

The principle assumptions adopted here are as follows:

1. Linear elastic shell theory and linear flow theory are assumed.

2. The foundation is considered as an elastic halfspace.

3. Rocking motion rotates about a horizontal axis perpendicular to the
plane of vibration and the motion is infinitesimal.

4. Internal 1liquid is ideal fluid.

GOVERNING EQUATIONS

System Considered

The model treated in this paper is made up of liquid-circular
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cylindrical shell-a rigid circular disk footing system in Fig.l. Using
circular cylindrical coordinate system (x, § ,r), the displacements are repre-
sented by u, v, w. It is assumed that the footing of the shell is translated
by the free-field horizontal ground displacement Zg(t) which yield the sway
displacement Zo(t) and the rocking rotation ¢¥(t) of the footings. The
interaction forces between the footing and the elastic halfspace are presented
by the base shear V(t) and moment M(t).

The equations expressing dynamic equilibrium of the shell are expressed
by the Lagrange's equations as

49T 95 OF .y .x (g=1,2, 3N)

dtaﬁq+3nq I, @ o4, (1.2)
in which 7(t) is the generalized coordinate of the shell. In addition, the
two equations expressing the equilibrium of the footing in translation and
rotation are

g—tg—g-oa-v( t)=No B
%g\% HCEI=N
(1.b,c)
In these equations, T=Ts + Tb is the sum of the kinematic energies of the
shell and the footing which are expressed as the functions of the total
displacements of the shell and the displacements of the footing, respectively.
S is the strain energy of the shell derived from the elastic displacements and
F is the disspation function due to viscous damping of the shell. Ngq ,No and
Ng are the generalized forces to the shell which are derived from the internal
liquid pressure. Npq is the generalized damping force derived from the
internal liquid pressure.

Displacements of The System

The total displacements of the shell with respect to a fixed axis u!',v
,w! are expressed as the sum of the elastic displacements of the shell
u(x,t),v(x,t),w(x,t), the two interaction displacements at the base and the
free field ground motion:

cos%{u(x,t) - aW(t)} s

ut =
vt = sinS{v(x,t) - x¥Y(t) - Zo(t) - Zg(t)} s
wt = cos®{w(x,t) + x¥(t) + Zo(t) + Zg(t)} . (2.a-¢)

where a is the radius of the shell, the first terms of the braces are the
elastic displacements of the shell. Based on Rayleigh-Ritz method, these
displacements can be expressed as

ulx,t) = 5§ £2(x)Ca(t)

Az

2 £a(x)Ba ()

wix,t) = ,i £a(x)An () (3.a-¢)
in which fa(x) 1is the flexural vibration mode of a cantilevered bean,
f'n(x)=dfn/dx and Cn(t), Bn(t), An(t), (n=1,2,--.,N) are generalized coordi-
nates corresponding to Me(t), (q=1,2,-.-,3N). The displacements of the
footings are given by

v(x,t)

L]

u, = -cosfry(t),
Yy = -sin6(Zo(t)+24 (%)),
w, = cos6(Z (£)+24 (%)),

(4.a-c)
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Frequency Response Functions

For harmonic ground acceleration  Zg(t)=ewt |, the generalized
displacements and forces can be expressed in terms of their complex
frequency responses; "a(t) = Ta(w)e®' , Zo(t) = Zo(w)ew! , Y(t) = P(w )ewt
v(t) = V(w)ewt , M(t) = M(w)ewt , and internal hydrodynamic pressure is
P(x,r,9,t) = P(x,r,H,w)ew .,

V(w), M(w) may be obtained from the complex stiffnesses of the rigid
circular disk on an elastic halfspace for the case of shear or dilatational
waves propagating vertically. In this paper, using the results obtained by
Veletsos and Wei (Ref.2) and mneglecting the effects of cross terms of stiff-
nesses, V(t) and M(t) may be expressed as

V = Koko(iw)Zo ,

M = Kaka(iw)¥ , (5.a,b)
where Ko = 8 PgVsay /(2-vg), Kg = 8PVsal/3(1-vg) are the static stiffnesses
of the disk, p; , vy are, respectively, the mass density and Poisson's ratio
of material of the halfspace and Vs is the shear velocity in the halfspace.

Generalized Forces of Liquid

Representing the boundary value problem between the liquid and the shell
by the pressure P, the following relations are given
32 . 123%* 13 37

+-—+——‘2—P_=0, (6)

2_ - — —_—
VIRGx,r,8,0) = o+ Lmmrt 20t g

3P P

W(X,I,O,w) =%§(x,r,ﬂ,w) =0, |§;(X,0,3,w)l <M,
-g%(O,r,&,w) = -cosSr¥(w)

-g—i(X,a,%,w) =%t = cos%{g(x,w) + xTi’r(w) + 'Z_'o(u)) + 1}

- - _P-
B(h,r,%,w) + iuP(h,r,%,0) + g%(h,r,&,w) =0 (7.ace)

where M is constant, uis the damping coefficient of the free surface due to
sloshing, g is the acceleration of gravity, h is the height of free surface.

Because the governing equation as well as the boundary conditions are
linear, P is able to be expressed by the superposition of the complex frequ-
ency response functions Pn(x,r,w),Po(x,r,w) and Pr(x,r,w) which are associated
respectively with the elastic response function W(x,w), translational response
function Zo(x,w)+1 and rocking response function?ﬁ(x,w) and becomes

P = -pLacosS{r:L:]Pn (x,7,w)Ar(w) + Pol(x,T,0)[Zy(w) + 1]+ PR(X,r,w)‘i’(w)}(S)
The solutions of these boundary value problems are obtained as (Ref.34)

FaGt,1,0) = 3 Dyy () cos(Exx) - 2 Biw)—E—3; (A D) cosh(hid)
k=0 i=t cosh()\,,g) a a

20 ()\1%') cosh(?\u)—:') . o+ 2iEw
» H(iw) = wl + Zifwjw - w3

-_— r J .
Po(x,r,w) = - ,é:, Hi(J.uJ)()G' DT a1 cosh(Ay,; &y
a

Ba (x,1,0) = a[g 6, 31 0uD) {smmﬁf) -H <im)tanh<x,i§>cosh<x‘i§>}, o= /2w s

+ il: T OGSy (Hy (iw) = 1)
j=1 a
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cosh()\nz—) + 1

K
{ sinh(/\”%) g‘ Fka(r>eln(5k‘<)] (9.'3.-(:)

in which P_ 1s the mass density of liquid; J; ,I, are, respectively, Bessel
function and modified Bessel function of the 1st kind;w, §; are, respectively,
circular frequency and damping constant of the j-th liquid sloshlng
When the effects of the waves at the free surface of liquid are neglec-
ted, the solutions are obtained by substituting wj=0 in these equatioms.
The generalized forces of the liquid pressure can be derived f£from the
virtual work §Wp. éWp is expressed in the comstrained coordinates

h a
- t
W _mor(x,a,e,t)aw adxde+ﬂoP(O,r,B,t)BXadrdB, (10)

where dw'! is the virtual displacement of w! and 8X = rcosdy is the virtual
rotational displacement of the footing. éWp can also be expressed in the
generalized coordinate as

2 X
TS Doy mm,,)} cosh(Ai) +

5We =§Nqanq +NodZo+NR8 Y,
(11)
Lettlng equation (10) be the equal of equation (11), the generalized forces of
liquid are obtained. The generalized damping force Noa is able to be derived
from the virtual work related to a damping force P whlch may be assumed to be
proportional to the elastic equivalent added mass M" = -Pn(x,r,w)/pshs .
Npg = ZQCOS'S‘HZ:?n (x,r,w)zn (w) (12)

Equation of Motion For The System

Substituting the above displacements and forces in the equatlons (1 a-c),
the equations of motion then becomes :

(a1 {81+ [0 1H{Q (k1 {T} +{Taat (o + D+{Tal¥ = (Mo }r{Nod

T = = = v .
{rsdt {a} + Too(Zo. + 1) + Toos? + Tl ¥o
T (=r = " = It
{Tsab {Q} + Twor(Zo ‘+ 1) + Da? + p,h_ljr.a— = Ng

(13 a-c)
in which {Q}= [A+,... ,AN ,B1,...,Bn ,C1,...,CN], [Ms] (Cs],[K] are the mass,
damping and stiffness matrices of the shell,LthLFMare the effective load
coefficient vectors, [3,,[pq are  respectively the total mass and the total
moment of inertia associated with the shell and the footing and [poris their
cross term. N

The equations (13.a-c) 1is a set of 3N+2 algebraic equations. If the
normal modes of an associated liquid-shell system on an rigid base are used. in
the elastic displacemeénts, equations(3.a-c), ‘the number of unknown are
reduced. However, on account of sloshing at the free surface of liquid, the
repeated analysis of free vibration would be required for many values of
excitation frequencies.

Effects of Free Surface

Then, for the examination of the effects of sloshing to the system,
numerical examples are shown in Fig.2.a-b. But for the simplicities of
calculations, the tanks are assumed to be rigid in these equatioms.

Table 1 shows the parametric values of the model which has the height
ratio to radius L/a=3.849. Fig.2a considers .the effects of sloshing and
Fig.2b ignores the effects. In Fig.2.a, the peak atw=1.81 rad/sec is shown
corresponding to 1st mode of sloshing and there are two other small peaks.
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These peaks are excited at the same frequency with those in Fig.2.b. and the
magnitudes are almost equal, that is, the effects of coupling between the
impulsive pressure and convective pressure are negligible in this rigid tank-
soil system.

SYSTEM IGNORING WAVES ON FREE SURFACE

Fundamental Modes

If the effects of free surface of liquid are ignored, the equations of
motion will be <reduced by Ritz concept in Ref. 5 shown by Chopra et al. for
the interaction problems between buildings and foundations. In this study,
the Ritz vectors of the system are obtained by the analysis of shell including
liquid on rigid foundation in which the effects of sloshing are ignored.

The equations of free vibration are expressed as

®1{Q} = alims] + (Mc11{a} (14)

in which A, [MJare nondimensional natural frequency and the added mass matrix
of the liquid-shell system. The orthogonality between the modes is represe-

nted as {Q(n) }T[K] {Q<n)}=An{Q(n)}T[Ms+ML]{Q(n)}

_ (n) _(n)
—nMS 41'\/& ]s (15)

w],[h&?ﬁare respectively generalized mass of shell and liquid.

in which [Ms

Reduced Equation of Motion

For the system ignoring the effects of sloshing, the displacements are

expressed as wlx,t) = gnn(t)u“(x)

B na()va )

v(x,t)

wix, £) gnn(t)wn(ﬂ (16.a-c)

where un(x),va (x),wn(x) are the fundamental modes of equation (15) and N<N'.
Substituting the equation (16.a-c) in equation (2.a-c), and considering w; =0
in equations (6)-(10), the generalized forces of hydrodynamic pressures are
expressed as _

-pshsaﬂ[[M{‘)]h—‘n + sno)(Tz.:fJ + Eg) +rg‘F)&:g1, <n=1,2!"'N’)

_p,h,aﬂ[qglrgqj’_i" + FQOCZQ + TZ’g) + Fqu':l ,

Na

[}

No

Na

ouny e[ §15F + BuEo + o) + Do) (17.a-0)
where

MY = Bﬂ?n (x,a)wq (x)dx , B = p a/pshg ,

(] n, 1 n " P
L= 1§ = TSU‘DPO(X,a)wq (x)dx +J'O P (x,a)dx} ’
h n a .
o I‘R“;’ = -;—8“; Pa(x,a)wq (x)dx +fa P,.(x,a)xt:ix-(-f0 Pa(0,r)T? dr}

1" h n a 2
Torn= Tro= ?{fo Pp(x,a)dx +f° Po(x,a)xdx+j; Po(0,r)r dr} s

E]

Too = 8 Po(x,2)ax , Tan= 8{[ 2 Cx,a)xax + [ Ba(0, )2 ar} .
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In these equations, B is density ratio of liquid to shell, 30, [os are the
generalized loads of liquid due to the interaction between the translational
and elastic displacements, [sr, [hs are due to the interaction between the
rocking and elastic displacements and [og , [ho are due to the the interaction
between the translational and rocking displacements, which are almost equal
each other, respectively. Then, in the above equations they have been
respectively expressed as half of the sum.

Substituting equatioms (16), (17) into equation (1) and using the
orthogonality condition, equation (15), the equations of motion are expressed
as [Me*M{1Sa (i), - w* (TG+T)Z0 - W (TSa+T5)F

= (T&%+T) » (2=1,2,--,8")
- w? %(P(srgﬁ-rg‘g) )T‘{n - w? (I‘nq*' rog)fa - Uz(ruon + Ton )?
Nl
Kediw) = o (T, + Too)
Debema” Z (Tno + Ioo
- w‘j'( I+ Tm, - w*(Toor + Tr)Zo - W (Ton + T ¥
-1

. Kum (W) 7
pghgma

[}

=(Toon * Ton) (18.a-c)
in which

L L
I£2= So(_v“+wh)dx , Iﬁ2= EJ_auq—xvh+qu)dx,

a )
o= 2(5: ax+B| 247) e zj:xdx ,  [a= [;<a2+2x2 Jax+p| rlar,

These equations of 1liquid-shell-soil system are represented by N+2
generalized coordinates.

The complex frequency responses for any excitation frequency are decided
by the equation (18.a-c) and the responses to arbitrary ground acceleration
7g(t) can be FFT algorithm.

NUMERICAL ANALYSIS

To show the effectiveness of this procedure, responses of liquid-tank-
soil system are presented for the model as shown in Table 1. For the assum-
ption of rigid circular disk footing, the numerical model is ristricted to a
tall tank. The material properties of the halfspace are assumed for two
cases;  ome case has the shear velocity Vs=400m/sec, and another case has
Vs=150m/sec.

Frequency Response

Fig.3.a-c show the frequency response accelerations of the shell. 1In
Fig.3.a, the elastic response i decrease when Vs becomes small, but in Fig.
3.b-c, the rocking responses at the top of the shell wall and translating
responses show the contrary results with W.

In Fig.4, the responses using the modal analysis are shown, where the
system has the static foundation stiffness. The results in Fig.3.a and Fig.4
are similar to each other.

Response to Arbitrary Ground Motion

In Fig.5-6, the responses to the ground motion recorded at the EL-
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CENTRO(NS) 1940 are presented based on the above frequency responses. In
Fig.5a-b, the total accelerations of the shell are compared with the results
for fixed rigid foundation. While the effects of the shear wave velocity are
not brought out, the responses increase compared to fixed case. This méy be
explained as the increments of rocking response are greater than the reduct-
ions of the elastic response for comsidering the radiation damping. The
rocking effects are noticeable compared to the translating effects of the
foundation. Because %' , #' are almost same values in these figures, the
distortions of circular section are little.

In Fig.6.a-b, the response pressures to the above ground motion are
shown. In these fiﬁuresz Pr,Pe show the impulsive pressure produced by the
rigid motion, i.e. (Zo + Zg), ¢y, and the elasic motionm, i.e. ¥ , respectively,
and the total impulsive pressure P is shown as the root mean square of these
pressures. The pressure indicated by (FIX) 1is the total impulsive pressure P
for fixed rigid foundation. In Fig.6.a, where Vs=400m/sec, Pr is almost the
same value with Pe. However, in Fig.6.b, where Vs=150m/sec, Pe is consider-
ably small compared to Pr. This may be explained as the effect of radiatiom
damping decreases the elastic pressure, but increases the pressure due to
rocking motion. Consequently, the total pressure P becomes greater than the
pressure P(Fix).

CONCLUSTIONS

Basesd on Rayleigh-Ritz method, a procedure for complex frequency
response analysis of the liquid-tank-soil system including sloshing at the
free surface of liquid has been presented, in which the interaction forces
of the system are considered as the generalized forces. This procedure reduces
the freedoms compared with F.E.M. and for the case of neglecting the sloshing,
the number of generalized coordinate are more reduced.

Numerical examples show that the effectiveness of radiation damping
decreases the elastic responses but increases the rocking and translating
responses and total acceleration consequently increases compared to the case
of fixed rigid foundation.
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Fig.1 Shell Model.
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Table 1. Numerical examples of model.
MODEL a(em) ~ 2(em) hs(cm) h/L hs/a ap /a
1 550.0 2117. 1.500 0.9074 0.0727 1.05
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