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SUMMARY

This study deals with the harmonic responses of a rigid massless
foundation of arbitrary shape embedded in the surface layer of two-layered
visco-elastic medium. The Boundary Element Method is employed to formulate
the cowpliance watrix aund the foundation input motion, in which the Green
functions for two-layered visco-elastic medium are utilized. As the results
of this study, the compliance watrix of a hemispherical foundatiom is obtained
and it has become clear that the thickmess of the surface layer aund the
viscosity affect significantly the behavior of the foundationm.

INTRODUCTION

It has been shown that soil-foundation interactiom problems are
characterized by the compliance matrix of the foundationm and the foundation
input motion to various free field motion (Ref. 1). Many studies which have
dealt with surface foundations are available, but with respect to embedded
foundations, the investigations are few. In recent years, B.E.M. (Boundary
Element Method) has been shown to be a very powerful tool to study this kind
of problem, especially for the investigation of embedded foundatioms (Ref. 2).
Authors have already presented the efficiency of B.E.M. to study the dynamic
interaction of a rigid hewispherical foundation embedded in an elastic half-
space subjected to obliquely incident SH, P and SV waves and Rayleigh wave
(Ref. 3). The impedance matrix and the foundation imput motiom were presented
in that work and compared with other amalytical and numerical results available
to show its validity.

Although the studies using B.E.M. have been increasing in unumber, most of
them are restricted to the foundation supported on or embedded in an elastic
half-space. In this study, the harmonic respounses of a rigid foundation of
arbitrary shape embedded in the surface layer of two-layered voigt type visco-
elastic medium are studied by B.E.M.. Following the expressiom of B.E.M., the
compliance matrix and the foundation input motion are formulated as the
functions of a dimensionless frequency parameter ag. Then the Green functioms
for the surface layer of two-layered visco-elastic medium are presented
referring to the method proposed by Harkrider (Ref. 4). They are composed of
two solutions, i.e. fundamental solutions for full space and the homogeneous
solutions which are needed to satisfy the free surface conditiom, the interface
condition and the radiation conditiom completely. According to this partitiom
of the Green functions and their properties, the way of estimating the
influence functions is discussed. Finally, the compliance matrix of a

(I) Professor of Waseda University, Dept. of Architecture, Tokyo, Japan

(IT) Graduate Student of Waseda University, Tokyo, Japan

865



hemispherical foundation is presented and the effects of layering, viscosity
and embedment are discussed.

FORMULATION OF THE PROBLEM

In this section, the compliance
matrix and the foundation imput
motion for the embedded foundation
of arbitrary shape are formulated
following the expression of B.E.M..
The harmonic time dependence exp[iwt]
is assumed implicitly and Einstein
summation convention for indices is
used. Superscripts are employed to
identify the layer such thatu weans Surg
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The voigt type visco-elastic body
is governed by the differential y
equation of motiom

Fig. 1 Description of the model

CA,+u ) u, +uou, L.+ pwlu, = 0,(1)
v v v Ti,3] 1 (vm:poisson's ratio, p,:mass density,

AFRES

A=A+ iwh, = + iwu, m .
v T i s Hy = W My uv:Lame's constant, n:viscosity parameter)

where A_ and U_ are Lame's counstants of complex number, O is mass deusity,
w is a circular frequency, Yj is the xJ component of a displacement vector,
( ,j) denotes a partial differentiation with respect to xJ , and i is imagiunary
unit. The viscosity parameters N, and T  are introduced following Kobori et
al. (Ref. 5), . 1

N, =—s0 (X + 2y) _Sso My

d a ( A+ ) o Ng PRNTRIE
in which a is reference length (later a radius of a hewisphere), ©s, is a real
part of =0%/p)% . Using these parameters, wave velocities ¢4, and ¢g ,
¥ave numbers k(w and k(,,v are related to those of elastic body (real number) as
ollows,

_ -5 _ -k
Cav = 4,84 ? Cov = Ss,8s cgo = LA, + 20/ ol% 5 cgo = 1 w7 o},
% 5 = =
Kor = kaogd > ka = angs ’ k“” ¢ /cdo ’ kB° ¢ /cso )

gy = (A +2u)/C A +2u ) = (1+iaond)'1 , 8s = W /U, = (1+iaons)-1 , a0 =ké0a .
In the following Av is set equal to M, (i.e. poisson's ratio V =1/4) to make
ng=ng=n and g, = B =& - The model in this study is defined in Fig. 1.

A visco-elastic layer of thickness h with properties pi, u!

v V1 and n rests on
visco-elastic half-space with properties 92,1@, v, and n .

Following Shaw (Ref. 6), eq.(1l) is comverted to the expression of Boundary
Integral Equation,

CR ) - T + Ly G0 uG) drG) = Lul G 6 () ar) (2)

in which lm<;> and tk(Z) are the x° component of the displacement and the
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traction at the point X respectively, G&(;) is the gf*componegp of the free
field motion evaluated at the comtact surface, u;Jx,w and t;HQ,ﬂ are the
Green functions which denote the Q‘component of the displacement and the
traction at the pointy produced by a point force in the x* direction applied
at the point x. I denotes the contact surface and x and y are the points on I .
PR }s a coefficient which depends on the smoothmess of the surface at the
point x. Using n constant elements, eq.(2) is discretized into the expression
of B.E.M. (Ref. 7),

* . — % 5

e WD) - W) + T (L Du () = U, GLDE ) ()
where i and j denote a number varying from 1 to u, Lk(i) and t (i) are the "
component of the displacement and the traction at the center of the i-th
element and U;ﬁi,j) and Ttﬁi’” are the influence functiouns defimed by

k3 .. _ Y > > > % L. _ e > > >
U (030 = Jp g Geoxg) dlGx) T, (i,3) = frj b (%%,) dTG) (4a,b)
where I. is the area of the j-th element, and x, is the centroid of the i-th

element. Estimating eq.(4) at every boundary element and assewbling them yield
a system of linear algebraic equatiouns,

[ {u) = (T} + [T {u} = (0" [t] . (5)

Thus, the displacement and the tractiomns evaluated at the centers of the
elements are counected by eq.(5). Since the Green functions used here satisfy
the free surface conditioms tompletely, the surface on which the discretization
is needed is limited to the comntact surface of the foundatiom and the soil.

In order to formulate the compliance watrix and the foundatiom imput
motion in dimensionless form, a replaced concentrated force vector {Q} defined

% fql, ={el, T,

i i'i
is introduced. Then eq.(5) is deformed to

®kj,/ D06 (Q} = [H] {u} - (T} , (6)
in which matrices [G] and [H] are defined by
(6] {al=u / kg, Wy {et [u] =[] + [T] - (7

Since the foundationm is a rigid body, the displacemeuts at the contact surface
are determined by the rigid body motion and the generalized force vector is
obtained by integrating tractionms at the comntact surface. These vectors are
evaluated at the origin and defiuned by

[U}= ( Uy Uz Us a0y a9z ags ' | {T}= (i T2 Tsy,Mi/a Ma/a Ms/a )T | (8a,b)
where U; and T, are the X! component of the displacement and the force
respectively, ¢; and M; are the rotatiom and the moment about x' axis

respectively. The displacement and the replaced concentrated force vector at
a point X on the contact surface are related to {U} and {T} by the relatiouns,

U@} = (AU} (T} =@ (e} | (9a,b)
where the superscript” denotes the transpose and [A] is a matrix defined by
100 O x3/a -x2/a
AT =]010 -xs/a 0 xi/a
10 01 xz2/a xi/a 0 i
Estimating eq.(9) at every center of the element and substituting them into
eq.(6) yield the following key expressiomn,
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{u) =/ wiafc] {1+ (s} ' (10)
where [C] is the compliance matrix and {S"} is the foundation input motion
which are defined by el = ang, [[AT] (617" [H] [A]]! , (11)

18} = (Waogy) [c] (A1 (61 (T} | (12)

Estimating the compliance matrix [C] and the foundation input mwotiom {S“},
soil-foundation interaction problem is fully characterized.

GREEN FUNCTIONS

Green functiomns for the surface layer of two-layered visco-elastic medium
are defined as the displacemeunt and the tractionm in the surface layer gemnerated
by the conceutrated force which is located also im the surface layer. These
Green functions are derived following the method proposed by Harkrider (Ref. 4),
where the surface waves in multi-layered elastic medium generated by arbitrary
sources located im the wedium are studied using transfer matrix wethod similar
to that employed by Haskell (Ref. 8). In this method, the layer in which the
source is located is partitiomed into two layers by introducing imaginary
interface. Using transfer matrix expression and substituting the comtinuity
condition at the actual interface, the incountinuity condition at the imaginary
interface, the free surface coundition and the radiatiomn coundition, the
displacements at the free surface are evaluated in the Fourier-Bessel inverse
transformation form. From them, the potentials of the surface layer above the
imaginary interface can be obtained.

In order to obtain the Greem functiomns, these potentials are divided into
two parts; source potentials which denote the fundamental solutions for full
space and the homogeneous potentials which denote the effects of the free
surface and the layering. Moreover, the fundamental solutions generated by the
mirror point source are also separated from the homogeneous potentials. Green
functions are derived from these potentials and expressed in the summation
form, i.e. the sum of fundamental solutious UE] for the source and u:] for the
mirror point source both of which have explicit form as shown below and the
homogeneous solutions u,,; which are expressed in Fourier-Bessel inverse trams-
formation.

UF(;;)= 1 [5 —lx[-'kLR] L*L_{_L( sl i1 1
SREL m‘: k1 & SXPl-ikg, +(ké~)zaxk I ® exp[-kavR]—exp[—:.kavR])}_ ,(13)

M o> > 3?2 1 1 1,1
U (pox;) = w (6, v exol-ikg 8] Ty T ;—————{ 7 expl-ikg R]-exp(-ik) R1)}], (14)
= ¥ - . x = 1 2 3 > > >
R = | x; x5 | X ( xj s xj , J ), R = | xi-x;n | s xg‘ = ( X; , X; s -x; ) s
AL ( 1-2cos?8) T ="
11 3 4 ? 21 12 ’ u3l —Ulcoss ’
Ho_ H _ K, W ., Ho_ oM,
u, u, sin28% , U, Su tu (1-2sin%) , u , =y sin %,
H H
uLoT cos$ , uH = uHsinS s uH = uH 5 (15)
H 2u 23 S—H 33 A
uy =ITIJL dz u = QVJ (ag)x ké /Anui ,
—H _ 1 1 ~H
u, = Nan(aC)X kg, fewu U= QyJ, (ag)x k /lmu“, ,
T = QuJ (ag)x kL /4! T = u g aox kL /4
W Hyp 77 Bo v ? 5 CRP Bo WV ’
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= 2 _ -t b rcy b - b
QV (C /Fg)( AVle _sz.e ' .H‘"vle 8 _mvzera[b ) 3
. -t b b -8 o
wv b (rﬁ1C/E g)('l\vl e +AvZ rm )+ (& /Frs %)(“’ v, ¢ e "”~'~‘vzerclb )
Q, = ( Qua + Qp )2 > Qy, = ( Quy = Qup )2 > Oup = CFy, *

= (-3 /F ~rarb to b . -T2 b b
Qua = (-07/Fry 2)(8y e Hy, &0 )=(arg /Fg)(uy e Py D

_ 2 -ralb_ ra b -t8,b B1b
W (¢?/Fg)( AHle A\Hze ﬁuH!e o, e )

— P

r, =Y 5 8%, r, o =/gtg r =/c2-0%% , r, =/in’s

oy 81 2 3] =7

£ =/ (1-290k2-2v1) , 9= o(1-292)v/[u(1-291)v2] , n= ol , b= l\é s

p=p2/01, =ui/u; H

. ’ u . . . .

The equations for comstants Fof kl are omitted for space limitatiom til,tzl
aud t are computed from Ugps Yy and Uy respectively. The Green functious

are valid in the surface layer irrespective of the location of the observation
point above or bemeath the imaginary interface. The partition of the Green
functions contributes to the estimatiom of the influence functioms.

INFLUENCE FUNCTIONS

The influence functions U;L and T;l
are defined as integration of the Green
functions over an element. When

U*ﬁi,i)and T (i,i) are evaluated, the
pritucipal values must be obtained, for
u,, and til__ have tl}e singularity of the
order of T and T W respectively. Iu
order to evaluate U (z,J) andT (1,1)
(l”¢J? and to 1ntegraue Ukl’ tkl, ukl and
Er in (1,1) and 7T (i,i) » ordinary
Gau551an quadrature can be utilized.

triangular element

Fig. 2 Local coordinate systems
(y' -y* r-9) (@ :outer normal)

The principal values are evaluated referring to the local coordinate
system shown in Fig. 2; y y is an orthogonal Cartesian coordinate system and
r- 9 is a polar coordinate system, both of which are located in the plame of
the element and have the origim at its centroid. The terms expl ~1k‘ oF ] and
exp| —1k L] are expanded in Taylor expansioun series around r=0,

An' - i(2+y7) ( 3+ i(4+
b vy - (030 g 20 O sy

5+y8 1 i(6+y”)

3 Yy
+ g (kg 1)° - —gz0— (kgy) I

+{LY__1 .,._.X_klr_Ml(k O - _Y__)(k r)3+1—(-1—L(k 0}
kB 8 Bv. Bv 210 Bv
By 3y o dyr Yy By" 3y 16
X{coszﬁaxk ‘aiT + cosd sind ( € 3t ol ax k) + sin 3_—‘5 }] » (16)
then the integration with respect to r is carried out in the dimensionless
polar coordinate system, L1 eam Ro(®) 0 1 "
J},d[‘ = %y‘r,l (—;—)2_'.0 IE <kBO t') d(kBD r) d ) (17)

where Ro = ké R, R(9) is the value of T estimated at the edge. The integrationm
n
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with respect to k&f is carried out amalytically,

<
g 4, 0, 0 904, 0

BO
- E;v [ m- A2 g 3w MO Ry SR - D e sy
(3w 2 - 20w L QoD w R0 W)
x{coszggﬁz% + cosd sin® (_2};—11(%& + %5.- _Lk) + sin’$ zxz %; .

Then the integration with respect to ¥ is carried out nuwerically considering
the dependence of Rgo om 9.

F A F -> >
The integration of .t is carried out similarly for u,. For T and u are
mutually orthogonal, the integral with respect to kécr is estimated as

Ro? L (k1) dGkd

(k F

11 3 kg r)*
= [{y? log(kg ©) + (-7 + 7Y )
s (kio)?
+ i( - 5+-§— -—Y-)——B—V—‘- }( cosS—X—+ sm&-—L ) 0y
(ki r)? (k r)3
+ {-v? log(kg 1) - L__I_j B + i(-%'+ E%YS) B }
x(cos&-a-xL + sind -Ll ) l’]k.]l;o (19)
Counsidering the integral
é_;rg fz(&)féﬂ cosd/r dr 4% = é_y: _}‘éﬂ[log r]z(a)cos\‘} a4 = fg“ log R(8) cosd d¢ y (20)

the integration with respect to ¥ is carried out numerically.
COMPLIANCE MATRIX FOR A HEMISPHERICAL FOUNDATION

In this section, the numerical results are presented for the compliance
matrix for a rigid hemispherical foundation of radius a embedded in two-layered
visco-elastic medium; pz/p1 =L. 0,;VA1 =4.0, v=1/4, n=0.2, h/a=2.0, 4.0 and « .

In Fig. 3, compoumnents of the compllance matrix are shown as functlons of a
dimensionless frequency ac with different values of layer thickness ratio h/a.
The results for the square foundatiom supported on the same medium obtained by
Kobori et al. (Ref. 5) are also shown.

Comparison between the compliance functions for a half-space with N=0.0
and N=0.2 indicates that
1) Every component of the compliance matrix with N=0.2 exhibits larger phase
difference than that without viscosity.
2) The property of ci11 is similar to that of c3s and cyy is similar to cge.
3) The effects of N on the rotatiomal components cyy and cgg are more remark-
able than on ¢11 and c33.

With respect to the layering effect,
1) Some peaks which seem to correspond to matural frequencies of the system are
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Fig. 3 Compliance matrix for a hemispherical foundation
( vi=v2=1/4, p2/p,=1.0, uf:/u;=4.0, ni=n»=0.2, h/a=2.0, 4.0 and ~)
observed in contradictiom to the case of a half-space.
2) For thinmer surface layer, the peaks tend to be located at higher frequency.
3) The asymptotic property of the compliance functious for two-layered medium
with h/a=4.0 to that for a half-space in higher frequency shows siginificant

for ces the difference is hardly seen.

square foundation, the effects of embedment are discussed.

For ¢33, the asymptotic property
For c11 and cys, this property is more remarkable and

Comparing the results for a hemispherical foundation with that for a
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1)

2)

1)

2)

D)

2)

3)

4)

5)

6)

7)

8)

Every compliance function for a hemispherical foundationm has similar
property to that for a square foundation; the peaks are located at similar
frequencies.

Irrespective of the layering, iCaa‘ for a square foundation is larger than
that for a hemispherical foundation, in contradiction to the case of |qu|.

CONCLUSIONS

The effects of the embedment are mnot significantly affected by the thickness
of the surface layer.

The effects of layering is significant, especially for the location of the
peaks of the compliance functioms. The asywmptotic property of the
compliance functioms for two-layered wedium to that for a half-space strong-
ly depends on the type of applied force.
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