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SUMMARY

A  simplified dynamic model in which the interaction forces
corresponding to each mode of vibration are represented by a set of
frequency independent stiffness and damping coefficients is developed.
Such coefficients are determined from steady state analysis by conserving
the average workdone and the average rate of energy dissipated by the
interaction forces.

INTRODUCTION

The subject of forced vibration of footings on a semi-infinite
elastic half-space have been studied by using harmonic excitation of rigid
base. As the interaction forces thus obtained are frequency-dependent,
the transient analyses of structure-foundation system are carried out in
the frequency domain (Refs. 1, 2) or by modified excitation method (Refs.
3,4). These methods are complicated and time consuming. Parmelee et al
(Ref. 5) approximated the frequency-dependent coefficients by average
values so that the traunsient analyses of structure foundation system can
be carried out in the time domain. Recently, Balendra et al (Refs. 6,7)
obtained the frequency-independent coefficients more accurately, through
transient analysis of plane strain problem, by conserving the average work
done and average rate of energy dissipated by the interaction forces. The
purpose of the present study is to obtain the frequency-independent
stiffness and damping coefficients using the steady—state analysis.

INTERACTION FORCES

When a massless rigid disc of infinitesimal thickness situated on the
surface of a homogeneous, isotropic and linearly elastic half-space is
subjected to harmonic excitation, the corresponding interaction forces are
dependent on the following parameters: radius of the rigid base plate r;
mass density p, shear modulus p and Poisson's ratio v of the elastic soil
medium, frequency of excitation w, which can be expressed in terms of a

. . wr .
dimensionless frequency factor a = v where the shear-wave velocity,

VS = -% . For translation, uy, and ?ocking, ¢, motions shown in Fig. 1,
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the respective interaction forces are given by

P*(t) =K - ub(t) + qrﬁb (t)

Q(e) = Ky 6 () + G (©)

where Ko, KR
coefficients.

are the stiffness coefficients, while Cp, Gy
The stiffness coefficients reflect the flexibility of the

)

(2)

the damping

foundation medium while the damping coefficients reflect the dissipation
of energy within the medium as the waves propagate to infinity.

FREQUENCY DEPENDENT STIFFNESS AND DAMPING COEFFICIENTS »

Bycroft's Solution

The frequency dependent stiffness
in Ref. 8 for v =0 and 0 € a < 1.5 as

£
K:pvzr_____lﬂ__’ C_ =
T fZ + f2 T
1H 2H
f
K=DV r3_____l.R__._.; C. =
R f2 + f2 R
1R 2r
where le =
sz =
f1r
far

Solution of Veletsos and Wei

The frequency dependent stiffness

by 9
« - 8p Vs r f11 ) Do -
T 2-v a2 2 oot T
11" 8
8p V2 r3 f
K - s ( 22 ) C
R 30T -w ‘2 [ 27° ™
22 7 839

and damping coefficients are given

oV T f
2
2 2 2 (3a)
fru * foy
4
p Vs T fZR
a 7 2 (3b)
flr * fp

-0.2188+0 .05992a2-0 .007917 a*+0 .0005852a%-0 .0000269328+. .
0.12482-0.02366a3+0.0022992%-0.0001319a’+0 .000004866a°- . .

= —0.3730-0.31132-0.1782a2+0 .4880a3-0 .8498a%+0 .671a5-0 .1820a0+..
= ~0.01660a-0.1117a2+0.3680a5-0.2596a%+0.1024a9-0.02275a0+. .

and damping coefficients are given

3
8p VS T _ g11 ] I~
a (2 - v) f2 + 2
11 7 &
4
el (- £22 ) (4b)
3a (1 - V) 2, 2
22 7 83

The values of the dimensionless flexibility coefficients f and g are given
in Ref. 9 for the range 0 < a € 10.0 and 0 < v < 0.5.
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FREQUENCY INDEPENDENT STIFFNESS AND DAMPING COEFFICIENTS

In order to use the direct time-domain analysis for transient
response, Parmelee et. al. (Ref. 5) obtained frequency-independent
stiffness and damping coefficients by averaging the interaction forces
over a frequency range of interest. Bycroft's solution is used and the
following coefficients are obtained:

Ky = 44V "r 5 Gy = 2707 12 (5a)
s T s
Re = 230770 5 ¢ = 0.310v %7 (5b)

In this study, the frequency independent coefficients are obtained by
comparing two systems; one with frequency-dependent interaction forces
(denoted as Systems I) and the other with frequency-independent
interaction forces (denoted as System II). The frequency-independent
coefficients are determined by equating the average work done and average
rate of energy dissipated by the interaction forces of both systems. 1In
Refg. 6 and 7, the said coefficients are determined through transient
analysis, whereas steady-state analysis is being adopted in the present
study .

]
]

The structure-foundation system considered is a rigid circular plate
of radius r and mass m, situated on a surface of a homogeneous, isotropic
and linearly elastic half-space. The interaction forces at the soil-
structure interface are produced by the horizontal translation and rocking
of the plate. If P(t) and Q(t) are the time-dependent applied force and
moment acting on the plate, then

= I+ .
P(t) Kouy + Cpdy + mouy (6a)
- b+ 14 6b
Q(t) Koo + Coo + I ¢ (6b)
where Io = —z— m rz is the mass moment of inertia of the plate. If
P(t) = Poelmt and Q(t) = Qoelwt then vy = uoelmt and ¢(t) = d>oelwt where

Pys Q are the amplitudes of the respective loading, and u,, ¢ the
amplitudes of the resulting displacements. Since the relationships given
in Eqs. 6(a) and 6(b) are similar in expression, the following general
relationships is used for brevity:

iwt

. % .
=Kx+Cx+¥x, N()=XKx+Cx )
[} o] o

N(t) = Noe o

where N(t) corresponds to applied loading P(tz) or Q(t), N*(t) the
corresponding interaction force, x(t) = x e corresponds to the
resulting displacements ub(t) or ¢(t), and Y Tcorresponds to m_ or I, .
Furthermore K, and C, are the frequency-dependent stiffness and damping
coefficients respectively for each mode of vibration. Let
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= i 8
Xo XR + lXI ( )

where xp and x; are the real and imaginary components of x, respectively.
Substituting Eq. 8 in Eq. 7 and equating the real and imaginary components

yield

2
. - N, (K = wTY) . N, (uC ) 9
212 2 %1 2.2 2
(Ko - oY) + (mCo) (Ko w YT+ (wCO)
N
2 2 [o)
Hence lxo] =V x + X" o= (10)

2.2 2,1/2
(wb ®w"Y) +(u%))
Let W(w) be the Work done per cycle by the interaction force N*(t). Then,
for System I,

s ~ T 2 T .
Wy (w) = J'O N (t) xdt = K j'o xdt + C fo % xdt an

where T = %1 is the period of excitation. Using the real or the imaginary
component of the displacement x(t) depending on whether N(t) = NO coswt or
No sinwt, Eq. 11 yields
Wo(w) = K (5 |x|? (12)
1 o w o
Next, let E(w) be the rate of energy dissipated per cycle by the
interaction forces. Then, for system I,

T * . T . T .2 2
EI(m) = fo Ny (t) x dt = K fo x Xdt + C_ jo xdt = C_ 7w lxol
(13)

For System II, the work done and the rate of energy dissipated per
cycle take the form
_ o (I 2 2
W) = K x| |

H EII(m) = CO(Ww) lxo (14)

where Ko and Co are the frequency-independent stiffness and damping
coefficients. ~ Equating the average work done and average rate of energy
dissipated by both systems over a specified frequency range 0 < w < w
yields °

L fmo W (w) dw = L fwo W, (w) dw (15a)
0, o I w o II
L fw° E () do = > jm° E.. (@) dw (15b)
0, o I 0, o IT

In view of Eqs. 12, 13 and 14, Eq. 15 yields the frequency independent
stiffness and damping coefficients as
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w KO

o dw
N jo m[(Ko - sz)2 + (wco)z)
Ko I (16a)
Io 2 l2 5, v
w((KO CR L C )
w w C
o 73 7,
. (®, = w7+ (wc D7)
Co I (16b)
00 - dw

7.2 2
(®, = oD+ (uc )7)

The frequency independent coefficients evaluated using _the freggency
dependent KO and C_. are made dimensionless constants KO and Co for
translational and rocking modes of vibration as

>
b

K = — C = —— (173)

c, = —— (17v)

RESULTS AND DISCUSSIONS

The frequency independent stiffness and damping coefficients obtained
by the energy approach using Bycroft's solution are compared with the mean
values given by Parmelee, et. al. (Ref. 5) in Table 1. It is seen that
except C, , the coefficients obtained by energy approach compare very well
with the mean values. Over the frequency range used (0 < a < 1.5), the
function of Cy in Eq. 3(b) varys widely with the frequency of e§citation,
which attributes to the large difference between the value of Cp obtained
through energy approach and the mean value.

The frequency independent coefficients obtained through energy
approach using the solution of Veletsos and Wei are compared with the mean
value in Table 2, for the frequency range of 0 < a < 1.5. Again except
CR , the agreement between the coefficients obtained through energy
approach and the mean values is quite good.

In Table 3, the frequency independent coefficients KT*, CT* and KR*
presented in Table 2 through energy approach are compared with the
frequency independent coefficients given in Ref. 10. It is seen that the
coefficients through energy approach are in very good agreement with the
results given in Ref. 10 since the damping coefficients given in Ref. 10
for rotatioanl mode is a function of the mass moment of inertia of the
foundation, it was not possible to compare Cp obtained through energy
approach with that given in Ref. 10.
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CONCLUSIONS

The frequency-independent stiffness coefficients for both
translational and rotational modes as well as the damping coefficient for
translational mode, determined by the energy approach, wusing the
expressions for interaction forces given by Bycroft, and Veletsos & Wei
are in good agreement with the corresponding mean values for the selected
frequency range. However, the frequency-independent damping coefficient
for the rotational mode, determined by the energy approach, differs
somewhat from the mean value which is due to the fact that the
corresponding frequency—dependent coeffcient varies widely with the
frequency and hence, taking a mean value would introduce some error. With
the proposed method, it is possible to develop frequency independent
stiffness and damping coefficients for different types of foundation
resulting in simplified models for dynamic analyses of structure-
foundation system.
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Table ! Comparison with Parmelee's results using
Bycroft's solution (v = 0)
* % * *
Method Kp cT Kp CR
(i) Mean (Ref. 5) 4.4 2.7 2.3 0.31
(ii) Energy approach 4.53 2.70 2.52 0 .44
Table 2. Comparison with mean values using solution of Velotsos & Wei
for 0 € v € 0.5 and 0 < a € 1.5
. * *
Poisson's Ko Crp
ratio
v Energy Mean 7% Diff Energy Mean |7% Diff
Approach Approach
0.0 3.97 3.82 3.63 2.76 2.73 1.09
0.33 4.77 4 .66 2.27 2.87 2 .84 0.99
0.45 5.14 5.05 1.83 2.99 2.96 0.98
0.50 5.31 5.21 1.77 3.07 3.04 1.00
Lk
v KR* CR
0.0 2.52 2.29 | 10.31 0.44 0.31 44 .05
0.33 3.80 3.48 9.21 0.55 0.38 45.50
0.45 4 .62 4.23 9 .40 0.65 0 .45 45.91
0.50 5.08 4.63 9.69 0.72 0.49 46.10
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Table 3. Comparison with the frequency independent coefficients
given in Ref. 10
-
*
Pois§on KT* CT* KR
ratio
v Energy | Ref. 10 | Energy Ref. 10 | Energy Ref. 10
approach approach approach
0.0 3.97 4.57 2.76 2.63 2.53 2.67
0.33 4 .77 4.92 2.87 2.83 3.80 3.98
0.45 5.14 5.18 2.99 2.98 4.63 4 .85
0.5 5.31 | 5.33 3.07 3.07 5.08 5.33
I8
KT
B 1wt
e
|
Cp
Figure 1 Simplified Model for Interaction Forces in

Translational and Rotational Modes of Vibration
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