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SUMMARY

A freguency domain solution for handling Soil-Structure-
Interaction (SSI) problems, which can be implemented as a post
processor of standard modal analysis programs is presented.
The application results in a more realistic simulation of
response with a minimum of additional computer time.

INTRODUCTION

The dynamic response of massive stiff buildings, as en-
countered in Nuclear Power Plants, is often controlled
by SSI effects. These effects are more significant for soft
and medium soils, but even for very stiff rock sites SSI-
effects can affect structural response as compared with a
fixed base analysis. Today both, linear and nonlinear computer
programs are available to perform SSI-dynamic analysis. In
present design practice only linear approaches are used, except
for the determination of equivalent soil properties compatible
with the strain level induced in the soil during the earthquake,
for which use is made of approximations as described in reference
/1/. For a linear situation, SSI-dynamic analysis methods can be
classified as direct /1, 2/ and substructure methods /3, 4, 5/.
The last ones provide a very flexible approach in which the
problem is split in three independent parts /5, 6/: kinematic
interaction motion, impedance functions and dynamic response.
They can be solved independently of each other. Due to frequency
variation of the impedance functions, rigorous analysis has to
be performed in the frequency domain, which results in solving
big systems of equations several times (one for each freguency
selected to produce the system transfer function). Even if this
would not be a serious problem due to recent software and
hardware developments, it can lead to several hours of computer
time on a CDC-176-computer for a real 3 D structural model, as
the bandwidth of the Soil-Structure System is greater than
that of the structure alone. In addition, the frequency domain
analysis would imply the use of special unusual software for
the structural engineer. )

To avoid both of these inconveniencés, use can be made of
approximations based on a classical modal analysis as described
for example in /3/. Instead of using the eigenfrequencies and
eigenvectors of the structure on an elastic subgrade as in /37,
the method presented herein is developed for a fixed base
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situation.

This method is very effective in solving SSI-problems

for which the foundation can be assumed to be rigiq, which can
be shown to be the case in most practical applications related
to NPP design.

DERIVATION OF EQUATIONS OF MOTION

In the derivation, the following symbols are used (see

also Fig.
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Define the

with

1):

i-th normal coordinate

Fourier Transform of a.(t)

i-th modal damping of lstructure on fixed base
relative acceleration amplification function for
i-th mode

damping, stiffness and mass matrices of the structure
T(6n*6n)

P°M.@. = i-th generalized mass

stiffhess and mass matrices of foundation refered
to the centroid (6%6)

circular frequency

i-th natural circular frequency of structure on
fixed base

i-th eigenvector of structure on fixed base (6n*1)
number of nodes of structure

time variable

transformation matrix (6n*6)

i-th nodal transformation matrix (6%6)

vector of absolute displacements, including SSI-
effects (6n%*1)

Fourier Transform of U

vector of absolute displacements of foundation (6%1)

Fourier Transform of U

vector of given soil “displacements (output of

kinematic interaction analysis) (6%1)

Fourier Transform of U

translational aund rotgtional degrees of freedom

of node i (components of U)

coordinates of node i with respect to centroid

of foundation

vector of displacements relative to the base (6%1)

derivatives with respect to time

T
transformation matrix T = TT TT e TT . TT
1 2 i n
1 0 O 0 zZ,. =Y.
0 1 0 -z, 0% xj
- o 0 1 y -X 0
Ty= oo o 1t o o
0 0 O 0 1 0
0 0 O 0 0 1
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then U=Y + T~Ub (1
where Y = g ai(t)'ﬁi- (2)

The equilibrium equation for the foundation mass is
MbUb + K (U - Ug) = P
T

with P, = “TTMp = -TTM¥ - T

or rearranging (Mb + TTMT)-ﬁb + TTM§ + KbUb = KbUG’ (3
For the superstructure the equilibrium equation is

MU + CY + KY = 0
or MY + CY + KY = -MTUb. (4)

MTUb

Assuming that normal modes exist for the superstructure on
a fixed base condition, the i-th modal equation resulting
from eq.(4) and using eq.(2) is

T
X
. . ) _ i w
i
or in the frequency domain
a, () = ! . o) (6)
i -T2 2 . ¥ Ty vels
(Wi - ) + QIBiwa Mg
ith X, = T'M:@
wi is R
T _ ol .
Xi = Gi-M T .
XT
Inserting in eq.2: Y = E Hitﬂ)‘gé—-ﬁbtn)-ﬂi 1)
R i
i
JLZ
with Hi(Q) = (8)

(wiz -0% « 2ifaiwi.s'[

Substituting in eq.(3), the reduced system of equations of
the order 6%6 yields:

2 -

T

Xy

Xf
]

with M= M + TIMT + EHi(J?) -
i i
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Once U, () is known, the absolute nodal accelerations -can
be computed from

H, ()
5 zﬁ-—— xT.0, Q) 0, + 10, Q0. (10)
i

The inverse Fourier transform of eq.(10) gives the time
domain response U(t). Alternatively, U (fl) can be obtained
from eq.(9) and after inverse Fourier "transformation be used
as input in eq.(%4).

APPLICATIONS

The application of the above described substructuring tech-
nique presuposes the solution of three independent problems:

a) Scattering Problem:

It corresponds to the determination of the seismic input
motion U, or kinematic interaction motion, defined as the
motion of 'a rigid massless foundation embedded in the soil
and excited by the incoming seismic waves. To solve this
partial problem, formulations as found in /1, 2, 4/ can

be used. In the present case for simplicity a superficial
foundation for which Uy is identical with the free field
motion, is assumed.

b) Impedance Problem

The determination of the complex matrix K, = K,() + ik, @),
which represents the subgrade stiffness fBr a Aigid fougda—
tion as a function of frequency, may be computed by standard
programs as the ones described in /2/ or /7/. Fig. 2 shows
the soil profile selected to examine the influence of soil
layering on response for a real situation. The normalized
impedance functions shown in Fig. 3 were determined according
to /7/ (only diagonal terms are represented and used in
calulations). The adimensional frequency a_ = W'R/V_ is
determined using a shear wave velocity ¥ of an eqﬁivalent
half space which matches the static valués of the impedances
for the layered soil, For comparison, the impedances for a
half space are also shown /8/.

¢) The structural problem
Fig. Y4 shows the mathematical model of a reactor building
as typically used for design purposes. It consists of 3D

beams and lumped masses. Some of the resulting modal values
for a fixed base situation are also presented in Table 1.
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Thg frequency domain analysis described in section 2 is
best implemented as a post processor of the FE-Program used
for the structural analysis. In the present case an interface
was developed for the STARDYNE program.

Fig. 5 shows the amplification function of absolute acce-
leratlgns ( U,=1*exp(int) ) from eq.(10) for two nodal points
apd using the first 20 structural modes. The impedance func-
tions correspond to a half space with G = 150 MN, g = 2.1 t/m7,
v = 0.45. Also, the functions are represented from an exact
frequency domain solution. As it can be seen, an excellent
agreement of both curves is achieved.

For the selected soil, Fig. 6 and 7 show the effect of
different approaches on the absolute acceleration amplifica-
tion function: Curve O represents the frequency domain
solution from eq.(10). Curve 1, same as curve 0 but using a
modified impedance with K, : = 0.6¥K_ . Curve 2 is a frequency
independent solution wheré modal damging is limited to 15 %
for horizontal and to 30 % for vertical modes as prescribed by
German regulations /9/ for simplified analysis. Curve 3 is
the same as curve 2 but without chopping modal damping values.
For curves 2 and 3 half space formulas for the equivalent half
space are used to compute spring and damping values for a
lumped parameter representation of soil. Modal damping values
were computed as weighted averages using the element poten-
tial energy in mode i and the element damping.

As an alternative representation of the approximations
described above, Fig. 8 and 9 show the normalized variance
of absolute acceleration as a function of frequency for a
white noise stationary earthquake excitation. The curves are
normalized to the value which results from application of
eq.(10). Finally, the influence on typical response spectra
is presented on Fig. 10 and 11. As input acceleration an
artificial time history with a frequency content correspgnding
approximately to the NRC-spectra and normalized to 1 m/s” is
used.

RESULTS AND CONCLUSIONS

As can be seen from Fig. 6 through 11, all of the analysed
approximations strongly influence the amplitude and frequency
content of structural response. Specially the frequency
independent computations (case 2 and 3) produce a significant
shift of the resonance frequency and may simulate highly
conservative structural response (higher than a factor of 2).

As shown in this paper, these disadvantages can be.avoided
on the base of present standard tools with a very limlt?d
amount of additional computation by performing a more rigorous
SSI-analysis.

941



References

/1/  "FLUSH, a Computer Program for Approximate 30 Analysis of Soil Structure Interaction Problems”,

University of California, Berkeley, 1375

72/ "SASSI, a System for Analysis of Soil Structure Interaction”, University of California, Berkeley, 1381
/3/ Vaish, AK., Chopra, A.K., "Earthquake Finite Element Analysis of Structural Foundation System",

Journal of the Engineering Mechanics Division, 1974

/4/  Wong, H.L., Luco, J.E., "Soil Structure Interaction: A Linear Continuum Mechanics Approach (CLASSI),

University of Southern California, Los Angeles, 1979

/5/  Kausel, E., Roesset, J.M., "So1l Structure Interaction Problems for Nuclear Containment Structure,

ASCE Power Division Specialty Conference, Denver, Colorado, 1974

/6/  Lysmer, J., "Analytical Procedures in Soil Dynamics", University of California, Berkeley, 1978
/1/ Waas, G., "Dynamisch belastete Fundamente auf geschichtetem Boden", VDI-Bericht 381, Disseldorf, 1980
/8/  Luco, J.E., Westmann, R.A., "Dynamic Response of Circular Footing", ASCE, Journal of the

Engineering Mechanics Division, 1971

/3/  KTA Regel 2201.3: Auslegung von Kernkraftwerken gegen seismische Einwirkungen:
baulichen Anlagen, Fassung 1980

Authors

Roesset, J.M., Professor of Civil Engineering, University of Texas, Austin, USA
Arnold , J.P., Kraftwerk Union, Erlangen , W. Germany
Endres , A. , Kraftwerk Union, Offenbach, W. Germany

Auslegung der

. X; g 9 &
. i i i
Mofe | < b K y 2 9% V70| M70 | Vo s 0
1 33.0 0.07 62625 1.49 0. -64.2 1.00 . 0.
2 36.8 0.07 55955 1.74 0. -41.8 -0.07 0. 0.
3 63.4 0.07 7683 0.9 0. -2.8 -0.01 0. 0.
4 81.2 0.07 71403 0. 1.40 0. 0. 1.00 0.
5 81.8 0.07 10868 -0.1 0. -16.8 0.1 0. 0.
6 83.2 0.07 3600 0.36 0. 17.1 -0.66 0. 0.
7 90.3 0.07 59227 0. 1.n 0. 0. 0.07 0.
*) maximum value
Table 1: Modal Values for Structure on Fixed Base rormalized to 1
Concrete  Soil G-Modulus M
OElegnents Layers 0 200 400 600 80C
2 Foundation ,I g =22 {/md
19z of Building v=0.45
he -9 £=8%
Y i wdn 3
uivl Ny Y 4 Layers a om
N TTlayer a
xi _ gl 2Llayersa
\Tb" X 4 Layers a Bm
y - 70 4+——
rigid, 100 3 Layers a 10m
massless
v ~ 4 Layers a 12m
T " R e s e
g i Layers a
I e 700 eoth | 2 Lorems 3 150 2

Fig. 1: Mathematical Model, Notations {m}-270

Fig. 2: Soil Profile of Layered Site. Data and Model
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Fig. 3.2: Normalized Impedance Functions Imaginary Part
Soil Profile
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a =R R = Foundation Radius
°" v, V= Equivalent Shear Wave Velocity
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Fig. 4: Structural Model
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Fig. 5: Comparison Horizontal Transfer Functions
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Fig. 6: Horizontal Transfer Functions Node 170

B et
e
2.0+4 7
4
R
/

i /
L 1
R |

1.0 o 0

- /[./v

§ Va

= 4

=

= 0.0 . - . - .

0.0 2.0 4.0 6.0 8.0 10.0 Hz
Fig. 8: Normalized Horizontal Variances Node 170
Al

— 10.0 [—2
o~ | N\
Z 50 - \\

& \"‘\\ A\ ;

= // D 3

§ 6.0 W\

=] N

o SN \\

S 4.04 (U P
= N . S -_—

g, R Nl
£ 2.0 ==
2
wv

0.0

0.0 2.0 {0 6.0 8.0  10.0 Hz

Fig. 10: Horizontal Spectra Node 170
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Fig. 9: Normalized Vertical Variances Node 170

Fig. 11: Vertical Spectra Node 170

CURVE 0 : Frequency Dependent Solution eq.(10)

CURVE 1 : Frequency Dependent Solution eq.(10) with Kp:= 0.6:Ky
CURVE 2 : Frequency Independent Solution with Limited Modal Damping
CURVE 3 : Frequency Independent Solution with Unchopped Modal Damping
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