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SUMMARY

A general time domain finite element formulation and several effcient
numerical techniques are combined to form a new method of analysis for the
solution of three-dimensional soil-structure interaction problems. Factors
such as structural embedment, arbitrary soil-profile, flexibility of the founda-
tion, spatial variations of free field motions and interaction between two or
more structures are all incorporated in the new formulation. For elastic sys-
tems the method becomes extremely efficient however its major advantage is its
ability to be extended to account for nonlinear effects in the soil and struc-
ture.

INTRODUCTION -

Solutions to soil-structure interaction problems are commonly carried out
in the frequency domain. This is so, among other reasons, firstly because this
domain permits, through the use of frequency dependent impedance coefficients,
the splitting of the problem into substructures that can be analyzed indepen-
dently; and secondly, because most of the transmitting boundaries developed to
account for the radiation of the energy through the limits of the finite ele-
ment model, are frequency dependent.

So far these reasons have been powerful enough to inhibit the time domain
as the effective enviromment for the solution of the soil-structure problem.
However, frequency domain techniques can not solve true nonlinear soil and
structural problems, and are computationally inefficient for three dimensional
problems. The purpose of this paper is to present a time domain formulation
and efficient numerical techniques that can solve the soil-structure interaction
problem in three dimensions, and at the same time allow for the solution of
true nonlinear problems, feasible only in the time domain.

The discussion begins with the formulation of the soil-structure interac-
tion problem in the time domain, it continues with the numerical techniques
that make the solution of the problem efficient, and ends with a numerical exam-
ple that shows the accuracy achieved by the new method compared to a frequency
domain solution.

FORMULATION IN THE TIME DOMAIN

A given soil-structure interaction problem may be divided as shown in
Figure 1 into a free field, and an interaction problem in which the input
motion is defined at the nodes corresponding to the buried part of the struc-
ture (Ref 1). This partition of the complete problem has a main advantage in
eliminating the scattering problem, and -only requires that the structural
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properties, stiffness, mass and damping, at its embedded level be reduced by
those of the soil at the same level. The total displacements may be divided
into the interaction and the free field displacements as follows:

vl 0
; -
vr vy
Ve =1, and ¥o=1- (1)
v,
& g
V) ¥,

where v represent the motions at the structure, v, at the bqried part, v, at
the soil and v, at the soil-structure interface. The notation used for the

property matrices are:

m my 0 0 0 0 0 0
mf my—iny mype—pz 0 ~ 0 My g O o
m, = _ m, = R
¢ 0 mgy—ings Mgy 0 ‘ 0 my Mgy My,

0 0 0 0 0 0 Fig My,

and in the same manner for the stiffness and damping matrices. The free field
equations (Figure 1b) are:

m, m, || ¥, g & || V. k. k, || ¥ 0
;) Wy || 7, * & T || Vs * ki ke [[ 70 - [ O] (3)
The equations for the interaction problem (Figure lc) are (Ref 1):
[fil0+mc] Vi+ [ g +c, ] v+ [ k. +k, ] l=—-m.V.—c, V. =Kk ¥, (4)
The substitution of Equations (1) and (2) in Equation (4) yields:
[mc+mp]vc’+[éf+cc]i§f+[l‘ir+k‘.]v".= (5)
moo0 g 0 ko0
myy=tyy mp=ity, | | 5 | | =8y cy=8 || 5 | | ks K=k || ¥
- My~ Mgy Mgy Ve - Cor—Cyr  Cy Vg B kﬂ./'_'lzé:/' Ky Yy
0 0 0 0 0 0

To simplify the notation let the matrices on the R.H.S. be called, X,,
X., and X; respectively. The free field motions at the embedded nodes (Figure
1b) may be obtained by solving Equation (3) by assuming a desired wave propa-
gation pattern. The simplest pattern is to assume vertical propagation of P
and S waves. Equation (5) may be further simplified by dividing the added dis-
placements in two parts: a dynamic component, v,, plus a pseudostatic com-
ponent, v&, (Ref 2). The pseudostatic displacements may be derived from Equa-
tion (5) by eliminating the dynamic terms. The displacement decomposition is
given by the following expression:

=

(6)

Vi=v. +vi=v, +r,

<t
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where:

ko0
; 1 | ky=ky kpo—kp,
r=— [k(' +k, ] 11 -_r,f Fe Kfy 7
k&/'—l"&tf' kg
0 0

substituting Equations (6) and (7) into Equation (5):

~
i

[rht.+mc]'w;c + [E‘.+c(.]iq. +[l~((,+k“]v‘.=“ﬁ1c +m(.]rf+X,,,} (8)

P B

Equation (8) defines the motion of the system in terms of the dynamic dis-
placements, and as a fuction of the free field ground motions at the buried
part of the structure. It is easily seen that the forces in the nonburied
part of the structure will depend only on the dynamic displacements, whereas,
those in the buried part will now depend on the dynamic as well as on the free
field displacements. The nonlinear problem can be solved by dividing the sys-
tem, as shown in Figure 2, into a scattering and an interaction problem. The
interaction motions contain the total displacements of the structure and the
nonlinear part of the soil, therefore Equation (4) is suitable for nonlinear
analysis in those regions.

REDUCTION OF THE SYSTEM OF EQUATIONS

The authors have demonstrated (Ref 3) that the use of sets of a special
class of Ritz vectors (Ref 4) lead to very good solutions for wave propagation
and structure-soil interaction problems. Several ways of using them as part of
dynamic substructuring techniques have also been shown (Ref.1,3). The reduc-
tion in the size of the given problem can be done using those substructuring
techniques, however, for simplicity in this discussion we will use the Ritz
vectors globally, without making use of any substructuring procedure. Let the
following displacement transformation be defined:

<

where @ are the global Ritz vectors and Y are the generalized coordinates.
The substitution of the above transformation into Equation (8), and the
premultiplication by ®7, leads to:

~

. . Vy
M'Y+CY+KY = —@T[ lm¢.+m‘.} r. +X,, o (10)
&
where
M*=<1>T[mt.+mv]q> C*=<I>T[c‘.+6(.]® K’=(I>T[kc+f(¢.]d> (11)
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The numerical integration of the reduced coupled set of equations can be
carried out by step-by-step procedures or by decoupling the system with com-
plex eigenvectors, and solving each of the uncoupled equations by the linear
force method. The second approach becomes exact for piece-wise linear type of
excitation, while the first always introduces errors in the amplitude and
periods of the response. For reduced systems of equations (up to 100 mode
shapes) the complex eigenvector method is as computationally efficient as the
step-by-step methods, and therefore it becomes a better candidate for numeri-
cal integration (Ref 1).

MODELING THE SOIL-STRUCTURE SYSTEM

The size of a typical three dimensional soil-structure interaction prob-
lem will in general be very large. The use of approximate frequency indepen-
dent boundaries (Ref 5) still requires moderate sizes of finite element models.
In order to further reduce the size of the problem a technique for geometri-
cally modeling the soil-structure system is described bellow. This technique
is based on the combined use of solid and axisymmetric elements to model the
near and far field respectively. The reason behind this approach is that the
behaviour of the soil system in the far field, away from the structure, will
tend to be that of an axisymmetric system subjected to non-axisymmetric loads.

Figure 3 shows a method of modeling a soil-structure system. A given
structure will be represented with standard finite elements. The foundation
will be attached to the near field part of the soil, that is modeled with solid
elements. At a certain distance from the structure the solid mesh is attached
to the far field that is modeled by means of several harmonic éexpansions of
axisymmetric finite elements. In order to couple both the near and the far
fields, the displacements corresponding to the solid elements at the boundary
between both regions are expanded in terms of Fourier series. The correspond-
ing displacement transformation matrices (Ref 1), are used to transform the
solid mass, stiffness, and damping matrices of the solid elements in contact
with the axisymmetric mesh.

Another aspect to consider in modeling the soil-structure system is the
internal damping. The damping characteristics of each of the components, soil
and structure, can be independently represented by the Rayleigh damping model
defined from damping ratios at two different frequencies. Damping ratios for
soils are usually kegpt constant over all the frequency range. A good selection
of the frequencies necessary to define the Rayleigh damping model will keep the
variation of the damping ratio quite constant over a wide frequency interval,
as will be seen in the numerical case given below. For cases where the fre-
quency range of interest is too large several terms of the Caughey series can
be considered to maintain a constant damping ratio (Ref 1). Since different
damping ratios are considered for the soil and the structure, the resulting
global damping matrix will be nonproportional. The consideration of a
transmitting boundary will further contribute to the nonproportionality of the
damping matrix.

NUMERICAL EXAMPLE

The procedures explained above have been implemented in a special version
of the computer program SAP80 (Ref 6) for the solution of soil-structure
interaction problems. To evaluate their effectiveness, a three dimensional soil
structure system, whose characteristics are shown in Figure 4, is analyzed.
The superstructure consists of a 2 degree of freedom system attached to a
rigid massless circular foundation. The lumped masses are connected by frame
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elements. The foundation is attached to a semi-infinite half-space with the
characteristics depicted in Figure 4. The half-space is discretized with
axisymmetric finite elements. The length and depth of the mode! are 5.5 and
5.8 times the radius respectively, with a total number of degrees of freedom
equal to 714. The material damping is assigned a constant value for all the
frequency range equal to 7 %. In order to represent this behaviour in the
time domain the Rayleigh damping model is used. The frequencies taken to match
the given damping ratio are 23 and 70 rd/sec. This will insure a variation of
the damping ratio of less than 0.% (ie. 6.1 to 7.9 %) over the frequency
range of 21<w<87 rd/sec. This corroborates the fact that Rayleigh damping
models can provide a quite constant damping ratio over a wide range of fre-
quencies. Attached to the edges of the model there is a frequency independent
transmitting boundary defined at the fundamental frequency of the system (Ref
5) which has been previously computed to be 25.8 rd/sec.

The frequencies of the 2 degree of freedom model on a fixed base are 34.24
and 85.38 rd/sec. The significance of the soil-structure interaction effects in
the dynamic response of the system is apparent from the fact that the first
resonant frequency for the structural response has been reduced from 34.24 to
25.80 rd/sec. The second resonant frequency varies to a lesser degree from
85.38 to 80.42 rd/sec. The total system of equations is reduced globally, as
explained above, with 2 different sets of Ritz vectors, the first one has 15
Ritz functions and the second 40 (2.1 and 5.6 % of the total number of degrees
of freedom respectively). By running these two cases the convergence of the
Ritz vector approach can be checked. The system is to be subjected to the
vertical component of an earthquake excitation represented by the first 8
seconds of a given accelerogram, discretized at time intervals of 0.0l seconds
and with peak acceleration equal to 0.26 g. The results obtained with SAP80
are to be compared with those obtained by the computer program SASSI (Ref 7).
SASSI solves the problem using a frequency domain formulation. It uses fre-
quency dependent radiation boundaries, and complex stiffness coeffcients to
account for the constant damping ratio.

The structure-soil model is solved first by SAP80, with 15 Ritz functions
and with numerical integration by the complex eigenvectors, and second by
SASSI. The total maximum accelerations in "g" obtained by both programs are
given in Table 1. The maximum discrepancy is 3.6%. Figure S shows the
response spectrum at degree of freedom 1 for 5% damping. As can be seen both
solutions are very close. The discrepancy between the two solutions at the
peak of the spectrum is 9%.

The total maximum accelerations at both degrees of freedom obtained by
SAP80 with 40 Ritz functions, and SASSI are given in Table 2. The maximum
discrepancy is now 2.5%. The response spectrum at degree of freedom 1 for 5%
damping is shown in Figure 6, and indicates how close both solutions are. The
differences in the interval of periods between 0.2 and 0.3 seconds are due to
the different ways in which both methods represent the material damping. The
maximm discrepancy at the peak is now 2.5%.

PROGRAM | DOF1 | DOF2 PROGRAM | DOFl | DOF2

SASSI 0.440 | -0.393 SASSI 0440 | -0.393

SAP80 -0.456 | -0.402 SAP80 0452 | -0.400
Table 1. Table 2.

In order to see how important the interaction effects are in this case,
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the two degree of freedom model is analyzed for the given input considering
its base fixed. The maximum accelerations obtained in this way are 0.647 g and
0.424 g, which indicates that the reduction achieved by considering the
interaction between soil and structure is of the order of 30%. This difference
increases substantially when comparing the response spectrum of the model with
and without interaction effects, as illustrated in Figure 7. It shows the dras-
tic reduction of the response and the shifting of the resonant periods due to
the interaction. A third resonant period appears at 0.29 seconds due to the
participation of the soil.

Another aspect worth of analysis is the importance that the transmitting
boundaries have in the response of the system. For this purpose the same exam-
ple is solved again using 15 Ritz functions, with the bottom boundary fixed and
allowing horizontal displacements at the lateral boundaries. Figure 8 illus-
trates the response spectrum obtained under these conditions compared with
those obtained previously, which included the transmitting boundaries. As can
be seen the errors introduced by not including transmitting boundaries in the
finite element model are considerable, even for an input of short duration as
in this case (only 8 seconds).
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