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SUMMARY

A rigorous procedure to calculate soil-structure interaction for a non-
linear structure and a linear unbounded soil is discussed. The dynamic—flexi-
bility coefficients for unit impulse forces of the horizontally layered half-
space are determined. By way of illustration, a structure with a nonlinear
base isolation and a structure with partial uplift of its basemat are analyzed.

INTRODUCTION

The procedures to analyze soil-structure interaction for a linear system
are well developed (Ref. 1). The calculation is normally performed in the fre-
quency domain, whereby the (frequency-dependent) dynamic stiffness of the soil
takes the radiation condition of the unbounded domain into account. It is,
however, well known that structures are designed by providing sufficient duc-
tility to perform in the nonlinear range for high seismic excitation. Base-
isolation systems with friction plates, which exhibit strong nonlinear charac-—
teristics for the design-basis earthquake are routinely used, even for nuclear-
power plants. Other local nonlinear effects include the partial uplift of the
basemat, the separation occurring between the walls of the base and the neigh-
boring soil in the case of embedded structures, and the highly nonlinear soil
behavior arising adjacent to the basemat. In all these cases, the nonlinear
behavior is restricted to the structure and possibly an irregular soil region
adjacent to the structure (the near field), while the far field of the unbopnd-
ed soil is assumed to remain linearly visco—elastic. Referring to Fig. 1, the
line joining the nodes with subscript b (for base) separates these two regions.
The subscript s (for structure) denotes the nodes of the nonlinear discretized
system. To analyze such cases, procedures which work directly in the time do-
main have to be used.

The basic equation of motion in the time domain is formulated as (Ref.2)
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[M] is the mass matrix, {ut} denotes the vector of the total displacements,
{P} the vector of the (nonlinear) internal forces, {u%} the vector of the scat-
tered motion, which follows from the free-field response of the site (Ref. 1),
and the dynamic-stiffness matrix of the soil, taking the excavation into aec-
count in the time domain [S§(t)], contains the forces required to produce
unit-impulse displacements. The Eq. 1 contains convolution integrals and can
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be solved e.g. by explicit integration.
Approximate expressions for the dynamic-stiffness coefficients in the time
domain of a rigid circular basemat resting on the surface of an elastic half-

space are discussed in Ref. 3.

INTRODUCTORY EXAMPLE

For the purpose of studying the properties of the dynamic stiffness in the
time domain, the semi-infinite rod with an exponentially increasing area
A(z) = Al exp(z/£) (2)
is examined (Fig. 2). A, represents the area at z =0, £ is a parameter. In
the frequency domain, the dynamic-stiffness coefficient S(ay) at z = 0O can be
expressed as (Ref. 4)

S(a ) = EA (1+ V1-4a2)/(2f) (3)

with the dimensionless frequency a, defined as

a = wf/c (4
0 o

with ¢y = vE/p (E = modulus of elasticity, ¢ = mass density). In the time do-
main, the dynamic-stiffness coefficient S(t) (force for unit—impulse displace-
ment) follows from the Fourier transformation
c 4
- o -
S(t) = 5%? _£5(ao) exp(laot)da0 (5)

with the dimensionless time t defined as

- CO :

=— t 6
t=-3 (6)
As the frequency tends to infinity, S(ay) will approach infinity. It is thus
necessary to decompose S(a,) into a regular part and a singular part whose
transformation is valid only in the sense of a distribution. Substituting Eq.3

in Eq.5 leads to
+® +® Y1-4a2

c EA
- o o 1 1 ., = [¢) . T
S(t) = ——§E_-l EF__I E-exp(laot)dao * 5 _f — exp(laot)dao ] (7

The first term within the bracket is equal to 5(E)/2 (Dirac delta functiom).
For t > 0, the second term can be shown to result in J1(t/2)/(2%), where Jq is
the Bessel function of the first kind and of the first order. The remaining
contribution of the second term leads to d8(t)/dt. Eq. 7 is thus transformed
to (for t > 0)

c EA
o o

1. - 1 t
2 [76(t)+ dt +§J1(7)} ®

S(t) =

and for t < 0, S(E) = 0.
The force R(t) follows from the convolution integral of S(t) and the dis-
placement w(t).

t
R(t) = fs(t-1) w(r)dt €))

Q
Substituting Eq. 8 and with 6(t) = 8(t)f/c_ and d8(t)/dt = §(t)£%/c?, Eq. 9
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results in
EA t c
_ o1 £f . 1 1 0
R(t) = < |2 w(t) + < w(t) ) £ T J165f(t—T))w(T)dT (10)
The first term can be interpreted as a spring with a coefficient EA of (2£)
(which is half the static stiffness), the second as a viscous damper with a
coefficient EAy/cy.
As the dynamic-flexibility coefficient F(ay) = 1/S(a ) tends to zero for
w * «, working with dynamic flexibilities may turn out to be computationally
51mpler In the time domain,
e, **
F(t) = 2Tf I(1/S(a )) exp(ia t) da_ (11)
results. F(t) multiplied by £ /(cOEAO) is plotted in Fig. 3 as a solid line.
Since no singular part exists, the integral in Eq. 11 can be calculated direct-
ly, using the Fast Fourier Transform. As the dynamic-flexibility coefficient
in the time domain equals the displacement for a unit-impulse force, the dis-
placement w(t) follows as

t
w(t) = [ F(t-1) R(T) dt (12)
o
Viscous-material damping can be introduced as
= E(1+2;Va01) | (13)
whereby the non—dimensionalized damping ratio
c
= o
“TE S ) (14)
applies. The corresponding dynamic-flexibility coefficient F(t) is also shown
as a dashed line for L = 0.2 in Fig. 3. In contrast to the undamped case,

F(t = 0%) = 0 for the viscously damped one.

LAYERED HALFSPACE

For surface and embedded (two- and three-dimensional) foundations, the
dynamic-stiffness coefficients S(a,) in the frequency domain are routinely de-
termined (Refs. 5, 6). The soil is assumed as a horizontally layered visco-
elastic halfspace. The structure-soil interface is discretized with boundary
elements. The source loads and the corresponding displacements and surface
tractions are expanded in the wave-number domain using Fourier and Bessel func-
tions for the two- and three-dimensional cases, respectively. As the number of
boundary elements is limited, the accuracy for higher frequencies diminishes.
However, analytical solutions exist for the asymptotic behavior (w + «)(Ref.7).

The Fourier transform of 1/S(ay) leads to the dynamic-flexibility coeffi-
cient in the time domain F(t), i.e. the displacement caused by a unit-impulse
force

c +®
‘] -
—_ 1 15
F(t) 2ﬂa f S(ao) exp(laop) dao (15)
with
wa =_5s 17)
a, = (16) t=—t (
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where a, and t are the dimensionless frequency and time, respectively. cg de-

notes the shear-wave velocity, and a the characteristic length, e.g. the radi-
us. The integration is performed numerically up to that a, for which the ana-

lytical high-frequency solution starts to be valid. This limit determines the

mesh size of the boundary elements. The remaining part of the integral can be

expressed in closed form.

The dynamic—-flexibility coefficients in the time domain for the horizontal,
vertical and rocking degrees of freedom of a circular rigid disc resting on
the surface of a layered halfspace are examined. The two limiting cases are
presented: in Fig. 4 the coefficients F(E) '"non-dimensionalized" by the static
values (of the halfspace) specified in the captions for the homogeneous half-
space, and in Fig. 5 those for the layer with a depth equal to the radius a
built—in at its base. Poisson's ratio Vv equals 0.33. The dynamic-stiffness
coefficients are taken from Ref. 5. Uniform viscous-material damping is also
introduced, defined by

G+ = 6(1+2C a i) (18) (M+26)* = (W+26) (1+2C a i) (19)
whereby the non-~dimensionalized damping ratio is defined as
c
- s
= == 2
;v a CV (20)

A and G are the two Lamé constants. As is apparent, all flexibility coeffi-
cients are, from a practical point_of view, equal to zero for t < 0. For both
the undamped halfspace and layer, F(t = 0%) can be calculated using one~dimen-
sional wave theory. For the horizontal, vertical and rocking degrees of free-
dom, the' values 8/(m(2-v)), 2/(m(1-v)) and 16/(3m(1-V)), respectively, result.
For the damped cases, F(t = 0%) equals zero, as the selected material law
(Voigt model) exhibits no instantaneous elasticity. The early-time behavior of
the flexibility of the halfspace and that of the layer are identical; in par-
ticular the maxima are the same. As expected, the oscillations are more pro-
nounced for the layer and for small damping.

COMPUTATIONAL PROCEDURE

An analogous formulation to Eq. 1 can be derived, using a flexibility for-
mulation for the contribution of the soil, together with the direct stiffness
method for the structure and the irregular soil region. The contribution of
the far field is formulated as

t
{u}:(t)} - {ug(t)} = g[FEb(t—T)]{Rb(T)} dT (21)

where {Rb(T)} denotes the vector of the interaction forces of the far field.

Starting from the known accelerations, velocities, and displacements of
the far field up to time t, determined in n steps, the displacements at time
t:+ At, {ub} 4ae, are calculated with the central-difference method. Eq. 21
can then be solved for the unknown interaction forces {Rplespc

n

- w8 17V (rut 8 _ g
By b e = Fpply Copdine = Tt ii (o) aet=i)ae Bl 1ae) (22)
No inversion has to be performed, as [F%b]o is a diagonal matrix. For a lumped
mass matrix, the acceleration follows as
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t
{ub}t+At = Mbb ({Pb t+ht © {Rb}t+At) (23)

STRUCTURE WITH BASE ISOLATION

The simple structure shown in Fig.6, with mass m with and without base
isolation is investigated. 3/4 m is concentrated at the height h. The mass mo-
merit of inertia associated with the rocklng degree of freedom at the rigid cir-
cular basemat of radius a equals”1/4 a’m. For a structure with base isolation,
half of the mass at the basemat (= m/4) is assigned to both parts of it. The
fixed-base frequency and the damping ratio of the structure without the base
isolation equal 4 Hz and 0.07, respectively. The nonlinear isolation mechanism
acting in the horizontal direction and located between the upper and lower
basemats consists of Neoprene pads, resulting in a frequency of 1 Hz, and
friction plates with a coefficient of 0.17. The following parameters apply:
a/cg = 0.06, h/a = 1.5, m/(pa®) = 3 (p = mass density of soil). Horizontal
and vertical artificial time histories which follow the US-NRC response spec-—
tra, both normalized to 0.21 g, are used. The soil ismodeled as a halfspace
with Qv 0 (Fig.4) and also as a layer built-in at its base with the depth
equal to the radius and T, = 0.02 (Fig.5).

Without Base Isolation With Base Isolation
Halfspace Layer Halfspace
Convolution [ Spring and [Convolution|Spring and | Convolution| Spring and
Integral Dashpot Integral Dashpot Integral Dashpot
Horizontal at Top 0.415 0.360 0.860 0.511 0.189 0.188
Horizontal at Upper
Basemat 0.245 0.234 0.240 0.247 0.251 0.223
Horizontal at Lower
Basemat 0.245 0.234 0.240 0.247 0.271 0.284
Vertical 0.273 0.262 0.498 0.315 0.273 0.262

Table l: Maximum Total Acceleration [g]

Calculations are performed not only with the rigorous procedure based on
the convolution integral but also approximately, using springs and dashpots
to represent the soil. The static-spring coefficient and the damping coeffi-
cient for high frequency are used. As is visible from Table 1 for the (linear)
structure without base isolation, the approximate method works better for the
halfspace than for the layer, as, in the latter case, the dynamic-stiffness
coefficients depend strongly on the frequency. Another choice of the frequen-—
cy-independent coefficients of the spring and dashpots, e.g. evaluated at the
fundamental frequencies, would result in a better agreement. For the nonlinear
case, the two procedure lead to similar results, as the influence of the soil
is diminished for a structure with base isolation.

STRUCTURE WITH PARTIAL BASEMAT UPLIFT

To be able to model the variable contact area between the soil and the
basemat, the interface has to be discretized into boundary elements, shown in
Fig.10 as squares. The corresponding flexibility matrix [F%b(t)] is calculat-
ed from the vertical influence function at the free surface of the undamped
halfspace ﬁ(tcs/r) for a unit-impulse point force. The vertical displacement
at distance r from the applied load P follows as
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w(r,t) = —s w(—) (24)

In Fig.7, w is plotted, whereby the temporal variation of the point force is
approximated by a Gaussian distribution with the parameter compatible with the
time step At of the explicit integration (Eq. 22).

As a check, the vertical displacement of a rigid circular basemat for a
unit-impulse force is calculated using w based on the discretization shown in
Fig.10, assuming relaxed contact. In this procedure, the compatibility and
equilibrium equations are formulated in the time domain. This vertical flexi-
bility (Fig.8) agrees well with that calculated from the flexibility in the
frequency domain of the total basemat (Fig.4b).

The structure (described in Fig.6) without base isolation is excited by
the horizontal earthquake normalized to 0.4 g and the vertical one (0.267 g).
The parameters are the same as described in the previous section. For this
level of acceleration, the basemat will partially lose contact with the soil
(uplift, Refs. 8,9). Slipping is disregarded.

No uplift occurs during the first second of the time history. The time
histories of the vertical soil reaction and of the overturning moment during
the following 1.5 s are plotted in Fig.9. Compared to the linear analysis, a
significant increase of the vertical reaction occurs, leading to high-frequen-
cy oscillations. The elevation of the basemat and the vertical soil pressure
shortly after uplift has started are plotted in Fig.1O0.
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