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SUMMARY

In this paper the response of an infinitly long, rigid, rectangu-
lar foundation, embedded in an elastic half space, to an incident SH
wave with the O8~function acceleration profile is derived. The radia-
tion and diffraction forces in the Laplace domain are obtained through
the short time analysis, proposed earlier by the author, and corrected
in the range of small values of the Laplace parameter s using the Born
aoproximation. The known forces due to radiation and diffraction then
yield the equation of motion, which is solved, and the results subse-
quently transformed back into the time domain.

INTRODUCTION

The dynamic response of a structural system may be significantly
affected by the soil-structure interaction. The recognition of this
fact led to intensive research of this phenomenon in the last twenty
years. The problem of the surface mounted foundation was dealt with
first. Due to the great complexity of the mathematical model involved,
very few exact solutions were found. In most cases approximate solu-
tions valid for a certain range of the parameters involved, e.g. low
frequences, were obtained. An extensive review of the pertinent lite-
rature was given by Wong and Luco (Ref. 1). The problem of the embed-
ded foundation was first investigated by Luco (Ref. 2) and Trifunac
(Ref. 3). They employed an antiplane model consisting of a semicircu~
lar foundation embedded in an elastic half space and excited by a har-
monic SH wave. Their results are exact for all frequences. Thau and
Umek (Ref. 4,5) and Umek (Ref. 6) gave the response Green function of
an infinitly long, rectangular foundation embedded in an elastic half
space to incident plane waves. Thelr results are exact during the ini-
tial period of time needed for a shear wave to transverse the width of
the foundation. The same model was later used by Dravinski and Thau
(Ref. 7,8) and the period in which the results were exact was doubled.
The other authors studying the embedded foundation problem used mostly
numerical techniques of different kinds and are therefore not of spe-

cial interest for this paper.
Our goal is to extend the time period in which the results ob-

tained by Thau and Umek (Ref. 4) are valid to all times. To achieve
this, what is believed to be a novel approach, not only in the dynamic
soil-structure interaction but in the general scattering theory, is
adopted.

DESCRIPTION OF THE PROBLEM

An infinitely long, rectangular foundation embedded in an elastic
half space excited by an SH wave with the O —function acceleration
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profile is considered. The width of the foundation is taken to be a
unity and the embedment depth is arbitrary and denoted by H. The orig-
inal interaction problem is subdivided into the radiation and the dif-
fraction subproblem, as suggested by Thau (Ref. 9), in which the for-
ces exerted on the foundation are sought. To reduce the complexity of
the problems further the Laplace transform is introduced. The excel-
lent work of Dravinski and Thau (Ref. 7) has clearly demonstrated that
the exact expressions for forces in the Laplace domain for the geome-
try under consideration are very difficult if not impossible to ob-
tain. Therefore we are going to derive the solutions for them, which
are exact some for small and others for large values of parameter s.
Combining them we will obtain a composite solution for which it is
believed to be valid, at least approximately, for all s's i.e. for all
times. The transformed forces, obtained this way, are then inserted
into the equation of motion, which is solved. The inverse Laplace
transform of the results yields the Green function for foundation ~ SH
wave interaction.

METHOD OF SOLUTION

The crucial point of this method of solving the interaction prob-
lems is that two expressions for the forces exerted on the foundation,
which are exact or at least valid for two different ranges of the pa-
rameter s, can be obtained. For our case the forces valid for large
values of parameter s have already been derived by Thau and Umek

(Ref. 4). Thus the radative force for a large s is:
F‘Rl(s) (2H + 1)s + 1.204 + O(exp(-s)) ; O.5ZH=1 (L)
The corresponding force due to diffraction then becomes:
f‘Dl(s) = f(s) {tanoc+ cota + %sec%(oc -%)
+ g”S cosa (écscéa—» tano -cota )
37773
+ o~2sH Sln“[% 2(d,+ —-) - tanQ - cota]}_+ O(exp(=-s)) 3
1
o;aé’—g ; 3SHSL (2)

whers f(s) is the Laplace transform of the incident wave profile and @
is the angle between the normal to the wave front of the incident wave
and the surface of the half space.

Despite considerable effort we have
ing analytical expresions for the forces
values of Laplace parameter s with their
to overlap or at least come close to the
(1) and (2). Therefore we have to settle

not been successful in deriv-
in the range of the small

domain of validity big enough
solutions given by equations
for a numerical solution and

the Born approximation was decided on. The advantages of this particu-
lar method are a reasonable numerical effort and the possibility of

further improvement of the results
racy is reached. The starting point
rigid inclusion in an elastic space
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Denoting the Laplace transform of the only in the antiplane problem
nontrivial displacement component by W we obtain for the diffraction
subproblem the following equation:

Jetr,z0) gz?’z(l'%“'—) got =7 5 r v onc (3)
C

and for the radiation subproblem respectively:

CfG(r,r') %gé%Ll de!' = W(S)[CJ”Q%5§+£L2 dc' - 0.5 ] 5 r, r'" onC, (4)

where G(r,r') = (ZE)_l Ko (s|fr = r'|) is the Green function of the

antiplane full space problem, the curve C is the perimeter of the
foundation and its miror picture with respect to the surface of the

half space, n is the unit_outer normal, W(l) is the Laplace transform

of the incident wave and W(s) is the Laplace transform of the founda-
tion motion. The zero order Born approximation of the equations (3)
and (4) is defined as:

3w
0

55 = ( ﬂth(r,r') dc! )"l W<i)(r) (5)
respectively

0w, _ -1 8G(r,r')

5o = W(s) (C/Gu«,r') det ) <Cf—7;;-—— det - 0.5) (6)

Multiplying the strains on the left hand side of the equations (5) and
(6) by the shear modul of the half space, the stresses along the foun-
dation perimeter are obtained. Integrating them yields the forces ex~
erted on the foundation in the diffraction and the radiation subprob-
lems.

Once the zero order Born approximations are known, we can consec-
utively calculate the hiher order approximations. Assuming that n-th
order Born approximation is known the (n+l)-th order approximation for
the diffraction is given by:

3w ; Ow
6.§+l - (CfG(r’r') de! )‘I[W(l)(r) - CfG(r,r') é—n—r'l dc' ] (7

and the radiation by:
awn

—-a-—n+—l = (ch(r,r') dc! )-l{W(s)[Cf-—G-(—;-}-ELl de! - 0.5]

oW
- c‘[G(r,r') 53% dc'} €))
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From consecutively higher orders of the Born approximation of the
strains, the corresgonding approximations for the radiation and dif-
fraction forces are calculated. They form series, which are believed
to converge to the exact solutions. The convergence of these series is
greatly improved by the use of the Richardson extrapolation.

In the way just described the forces, exerted on the foundation
in the radiation and diffraction subproblems are determined for as
many discrete values of s as desired. It is understood however that
all these values of s lie in an interval where s is small and the Born
approximation converges. SO we have succeeded in obtaining the radia-
tion and diffraction forces exerted on the foundation valid for two
different ranges of parameter s, which was our goal set at the begin-
ning of this paragraph. We now form the expressios for the forces val-
id for all s's as:

fR(s) = FRl(s) + iﬁ(s) . (9)
and
Fo(s) = Fm(s> + I(s) Ep(s) (10)

Where fﬁl(s) and ?bl(s) are the forces defined by equations (1) and

(2) respectively and Eq(s) and ED(S) are the correction terms to be

determined from the results obtained from the Born approximation. For
this purpose we write:

ER(S) = ; A; exp(-a;s) 3 §D<s) = Zl: B, exp(-ﬁis) (11)

where Ai, Bi,cxi and ﬁi are the coefficients to be determined. This

is done by fitting the equations (9) and (10) to the data resulting
from the Born approximation in the least square sense. Since the cor-
rection terms should apply for the times t = 1 only, the constraints
that . Z 1 and Bi = 1 have to be taken into account. In doing so

the inverses of the equations (9) and (10) are exact during the time
interval O t=1 and yield a valid expresion for all other times. Bal-
ancing the forces due to diffraction, radiation and inertia the equa-
tion of motion is formulated as:

2

( ms“ + TRl(s) + ﬁé(s) ) W(s) = fbl(s) + f(s) ib(s) (12)

where m is the total mass of the foundation. This equation is now
solved and transformed back to the time domain. This yields:

W(E) = W () - G(t)* W(E) + £(£) % ap(t) (13)

The first term on the right hand side of the equation (13) is the ‘
short time response of the foundation exact for O=t=1 as obtained by
Thau and Umek (Ref. 4). It is given by:
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. -1 = 2 = -
W () = 170 [F (ms® v Ty )7h ] (14)

The second and the third term are convolution integrals where

. -l = 2. = -

Gg(t) =L [ER(s) ( ms® + Fop ) 1] (13)
and

ay(t) = LM [ Ep(e) (me? + T )7Y] (16)

Evaluating the second term one has to note that this convolution inte-
gral can be arranged in such a way that only displacements of the
foundation for times less or equal to t-1 are required. Therefore e-
valuating the equation (13) for the increasing times, known functions
only appear on its right hand side.

NUMERICAL RESULTS AND CONCLUSIONS

For the purpose of the numerical calculation two different embed-
ment depths of H=l and H=0.5 have been decided on. The angle between
the direetion in which the incident wave propagates and the surface of
the half space has been taken to be & =0,251T . For these values first
the equations (5) and (6) and later for the increasingly higher orders
of the Born approximation the equations (7) and (8) have been evalu-
ated. In calculating the pertinent integrals, the trapezoidal rule and
a specially developed formula taking into account the singularities of
the Green's function and its derivative have been employed. The values
of the radiative and diffractive forces have been estimated using the
Richardson extrapolation technigue. Four terms have been taken in each
of the series expansions for correction terms in equation (11) and a
NAG-library routine to determine the unknown coefficients. The radia-
tive force for H=0.5 is shown in Figure 1. The dash line indicates the
Laplace transform of the force obtained by Thau and Umek (Ref. 4), the
small circles the results obtained by the Born approximation and the
s0lid line the force given by the equation (9). An incident wave with
the O -function acceleration profile has been chosen and the accelera-
tion response of the foundation has been determined and plotted in
Figure 2. Here again the dash line indicates the results obtained by
Thau and Umek (Ref. 4) and the solid line the results of the present
work.,

On the basis of the example given the proposed method could be
considered as successful. The long time limit of the velocity response
for the foundation with the embedment depth H=0.5 e.g. is 0.98, and
comes very close to the physically correct limit, which is 1.0. The
computational effort is also adequate and without considerable diffi-
culties., The standard mathematical library routins have been used
throughout our work with the only exception of the evaluation of the
integrals involving the Green's function and its derivative, where a
special formula has been derived. It is also believed that the exten—
sion to other geometries is straightforward.

However before anything more precise could be said about the
method, more examples will have to be studied and more expansions like
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those in equations (11) will have to be tried.
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