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SUMMRRY

The hybrid Frequency-Time Domain method is applied in the analysis of soil-
structure systems with bilinear hysteretic elements excited by seismic Load. The
proof of a monotone convergence theorem and numerical results are presented.

INTRODUCTION

The hybrid Frequency-Time Domain (FTO) method is a very powerful tool to
tackle nonlinear seismic soil-structure interaction analysis. In fact, it is able
to deal with the frequency-dependency of the characteristics of soil, while
materially nonlinear elements in the structure and, possibly, in a region of soil
near the structure are replaced by Linear ones. In order to equal the response of
this new soil-structure system to that of the actual one, a suitable modification
of the Load function (pseudo-load) must be taken into account. The computation of
the pseudo-lLoad requires the preliminary knowledge of the response function which
is in turn unknown; the method is therefore iterative.

The basic iterative FTD algorithm consists of the following steps:
1. Calculation of the starting pseudo-toad function
2. Calculation of the total (actual + pseudo) Load function
3. Transformation of the total lLoad function in the frequency domain
4. Calcylation of the system response in the frequency domain
S. Transformation of the response function in the time domain

6. Calculation of the new approximation of the pseudo-load function in the time
domain

7. If the convergence criterion is satisfied stop, else go to step 2.

In each cycle, the FTO algorithm processes the entire pseudo-Load and
response functions. If the iterative procedure converges, the "exact" response of
the system is obtained in the Limit.

The main advantages of the FTD method are:
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(1) the anatysis of the global soil-structure system (step 4) is performed in the
frequency domain, so that the frequency-dependent characteristics of the
unbounded soil, that take into account the radiation damping, are rigorously
taken into account;

(2) the nonlinear calculation of the new approximation of the pseudo-load
(step 6) can be performed via an element-by-element procedure in the time
domain;

(3) the degrees of freedom of the Linear part of the system can be condensed out
initially, so that the 1iterative procedure can be performed only for the
nonlinear part.

Oon the other hand, the iterative FTD algorithm requires an analysis of
convergence for various types of nonlinearity and/or Loading function.

The first proof of convergence for one-dof systems excited by harmonic
Loading has been presented in Ref. 1, and a more general proof for multi-dof
systems in Ref. 2. A proof of step-by-step convergence for multi-dof discrete-
time systems excited by transient Loading has been presented in Ref. 2, too.

In this paper a proof of Llocal convergence (i.e. convergence in a time
interval of suitable duration) for multi-dof, continuous-time systems with one
bilinear hysteretic element excited by transient Load (e.g. seismic Lload) 1is

"presented. It is proved that the properties of convergence depend on the starting
pseudo-load function. Numerical studies on soil-structure systems display the
sultability of the method for the analysis of soil-structure interaction.

THE BILINERR HYSTERETIC ELEMENT
The characteristics of a bilinear hysteretic element are the elastic
stiffness Ki, the plastic stiffness ke, and the deformation at yielding x,. The
state variables are the deformation x., the deformation wvelocity x=, and the

plastic deformation xs (Fig. 1).

Let ks be the difference between the elastic and the plastic stiffness, that
is:

ks = ki - ka. (1
The force f in the element takes the form:
f = ki xa -~ ka Xa. (2)

The state of the element is represented by the point P on the force-
deformation plane (Fig. 1).

The plastic deformation velocity x= takes the form (Fig. 2):

%2 = [)Xs = Xa = X)) NXa) + Ni-Xa + Xa - Xy) N(-X=2)] Xz, 3
where 7 is the Heaviside step function, that is (x) = 0, for x < 0, 9(x) = 1,
for x 2 0. Once the deformation function x: is known, the plastic deformation
function xs can be calculated via the following procedure:

(1) when the element is in the elastic state, xs is constant and its value equals

the value it assumes at the Last transition from the plastic to the elastic
state (Fig. 2);
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(2) when the element is in the plastic state, xa is given by the formula:
Xa = X1 - Xy 50n(x=) (4)

(the sign of the deformation velocity x= does not change when the element is
in the plastic state).

In the FTD method, the actual nonlinear element 1is replaced by a linear
element with the same elastic stiffness ki. In order to equal the deformation of
the new Linear element to that of the actual one, the pseudo-force r = ks Xz must
be added to the actual force. The state of the Linear element is represented by
the point Py on the force-deformation plane (Fig. 1). The pseudo-force function
r<*> at the i-th iteration takes the form:

P 2 ke xeft?, (i=0,1,...). (5]

The plastic deformation x=‘*’ at the i-th iteration takes the form:

X2t [tet*’ ()] (elastic state)
Xatt2(t) =
Xe¢4=22(t) - Xy sgnix=‘*"*’(1)] (plLastic state)
(i=1,2,...), (6)

where te**>(t) denotes the time of the Last transition from the plastic to the
elastic state before time t at the i-th iteration.

It is important tp stress that the nonlinear calculation of the new pseudo-
force approximation r¢*’> from the deformation approximation x.¢*=*’ can be
performed via an element-by-element procedure and results in a Llittle
computational effort.

THE FTD RLGORITHM

The FTD algorithm is applied to a multi-dof system with one bilinear
hysteretic element, and the convergence theorem is proved. No assumption is made
about the Loading function, so that the presented results are directly applicable
to the analysis of the seismic soil-structure interaction.

Let p be the Lload vector of the multi-dof system, and Let s¢*’ and q‘*> be
the pseudo-lLoad and displacement vectors, respectively, at the 1i-th iteration
(i=0,1,...). Let h be the system impulse response functions matrix in the time
domain, i.e. the value hmn(t-T) represents the displacement of the m-th degree of
freedom at time t for a unit impulse in the n-th degree of freedom at time t. The
matrix h(t-r) is symmetric and, for 0 ¢ t-7 < tn, positive definite (the value of
tn is a dynamic characteristic of the system).

The displacement vector g**> at the i-th iteration takes the form:
t

QY (t) = | hit-m) [p(r) + r“’(r)] dr, (i=0,1,...). (7)
¢

In the FTD algorithm, the convolution integral on the r.h.s. is calculated
via FFT techniques.

Let 0 be the row vector that transforms the displacement vector q into the
deformation x. of the hysteretic element, that is:
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xs = D Q. (8)

The column vector D7 transforms the pseudo-force r into the pseudo-load
vector s:

s = 07 r. (38)
The deformation x.¢*’ takes therefore the form:
t t

D h(t-7) p(T) dt + J 0 h(t-7) 07 r¢*>(1) d7T,

0

0
(i=0,1,...). (102

The former integral on the r.h.s. represents the effect of the actual load
and does not change during the iterative procedure, so that it can be calculated
once and for atl. The latter integral represents the effect of the pseudo-force.
Making use of the condensed impulse response function g(t-t) = D h(t-v) D7, and
of eq. (5), the deformation x.¢*°’ takes the form:

t 1
X212 (t) = ] 0 h(t-7) pl1) dr + J glt-7) ka x2*’(1) dr1,

0 0
(i=0,1,...2. 11)

Since h(t-r) 1is positive definite for 0 < t-1 ¢ tn, it follows that g(t-1)
is positive for 0 ¢ t-1 ¢ tg, with tg 2 tn.

Egs. (6) and (11) are the basis of the iterative FTD algorithm. It must be
stressed that only the deformation xa and the plastic deformation x= of the
hysteretic element need to be recalculated in each cycle.

The starting plastic deformation x=¢©> is finally dealt with. It is observed
that the constant value function

Xa¢ (1) = xalte(t)] 123

is equal to the "exact" plastic deformation xs in all the elastic time intervals,
so that no iteration is required in this case (the value xs[te(t)] is the "exact"
value of xa at the last transition from the plastic to the elastic state before
time t). The iterative procedure must be performed only in the plastic time
intervals. If the basic FTD algorithm is applied to the plastic time intervals
one at once, and the iterative procedure is performed in each interval after
convergence has been achieved in the previous one, the "exact" time functions Xa
and x= are obtained in a time-progressive manner.

This time-segmenting version of the FTD algorithm has proved to reduce
considerably the numerical effort with respect to the basic version that
processes at each cycle the entire xi and x= functions.

The convergence theorem for the time-segmenting FTD algorithm can be stated
as follows (Ref. 3).

THEOREM. Let [t.,t=] be a plastic interval of duration less than or equal to
ta. Let xa(ti) be the "exact" wvalue of xs at time t.. If the starting plastic
deformation x> is a constant value function that equals xa(ts), then the
sequence of the values xs‘*’(t) converges monotonically to xa(t), for every t in
the interval (t:,t=1 (Fig. 3).
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PROOF. For sake of conciseness, the proof will be given only for the case
x2(ts) > 0, since the case xa(t.) ¢ 0 is analogous.

Let Ant*? = xe €% - w0, (k=1,2,3), (i=0,%,...). Since xa*°’ 1is a
constant value function and x=‘*’ is a nondecreasing function, from egq. (11} and
the positiveness of g(t-t) for 0 < t-t ¢ tg, it follows that Ax,¢°> is a
nondecreasing function. Let ta‘®’ be the time the deformation velocity x=¢°°
zeroes (Fig. 3). Since Ax=‘®’ 15 a nonnegative value function, it follows that
ta¢*’ 2 t3¢°°, so that Axs‘*> is a nondecreasing function and, by induction,
Ax=42’, Ax=2=>,... are nondecreasing functions, too. Therefore, the sequence of
the values xz‘*’(t) is nondecreasing, for every t in the interval (ti,t21.

In a similar way, considering the functions A*xu‘*’ = xw - X‘*?, (k=1,2,3),
(i=0,1,...2, it can be proved that the sequence of the values x2‘*>(t) is upperly
bounded, for every t in the interval (t.,t=1.

The sequence of the wvalues xa‘*’(t) 1is nondecreasing and upperly bounded,
therefore it converges to a Limit xe*®’(t). Let ts*®> be the time x=¢=’ zeroes.
In the time interval (t.,t=*®>1, the Limit function x=*®’ satisfies both egs. (6)
and (11), so that it coincides with xs. From the continuity of x=¢=’, it follows
that ts*®> 1is greater than or equal to t=, therefore xa‘®’ is equal to xs at
least in the time interwval (t.,t21]. l

Numerical investigations based on the time-segmenting FTD algorithm to soil-
structure systems excited by seismic loading confirm the monotone convergence
theorem and display that convergence is reached in a considerably small number
of iterations (Fig. 4).

CONCLUSIONS
The time-segmenting version of the FTD method is described. A monotone
convergence theorem that stresses the importance of the starting pseudo-Lload
function and of the duration of the time segments is proved. Numerical studies on
nontinear soil-structure systems excited by seismic (oad display a good
performance of the method.
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