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SUMMARY

The caluculation method of the free field response of the layered soil is presented. The soil is
subjected to the obliquely incident body wave. This method is based on the stiffness matrix approach,
where the interface stress between half-space and layered soil is estimated as the function of incident
angle. The free field motion obtained by this method is applied to the foundation input motion problem of
rectangular embedded foundation.

INTRODUCTION

Method by Haskell-Thomson(1,2] and Chen et al.[3] are frequently used to calculate the free field
response of layered half-space soil subjected to obliquely incident body waves. In this paper the authors
propose alternative one of the above methods. In this method loads by dashpot effects and external load
effects of input waves at the interface between layered and lower half-space soil are added to the load-
displacement equation matrix which is derived throuth stiffness matrix approach by Kausel and
Roesset[4]. The displacement field is obtained by solving the linear equation directly. This method is
sophisticated and comprehensive in formulations, and matrix operations are easy. The displacement field
obtained is utilized in substructure analysis method for soil-structure interaction problems. Numerical
examples on effective input motions of embedded foundations in case of obliquely incident body waves(SH,
P and SV-wave) are presented to illustrate the use of this method.

CALCULATION METHOD

Formulation of Stresses in Half-space Consider a layered
system as shown in Fig.1. Layered soil is supported on elastic
half-space, and subjected to obliquely incident body wave. We
define the displacement vector U and the stress vector S in elastic
half-space as

Layered soil

U= [ux,uy,iuz} 1) S={txz,r.yz,ioz] 2)

In case that the plane waves are propagating in elastic half-
space, U and S are given as follows o

"y

Half space

U U
[ ]:{_ }exp{i(mt—kx—ly)} 3)
S S e

where o is the circular frequency,.k and [ are the wave numbers
of x-direction and y-derection, respectively. We can set [=0 Body Wave
without loss of generality. U and S are the functions of only z, and
the components are

Fig.1 Layered system
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According to Kausel and Roesset[4], the relationship of the displacement U and the stress S at the
interface between layered soil and lower half-space is

s =KU
z=0

z=0
where K is the stiffness matrix.

(6

In case of descending wave(radiation wave), x and z component of stiffness matrix K, which is
related to P-wave and SV-wave case, is
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The y-component of stiffness matrix K, which corresponds to SH-wave case, is

K1 =ksG
where

®

_ o 2 ; o 2 9)
r=1-Gyp) s=/1-0)

where G is the shear modulus, Vs and Vp are S and P-wave velocities of the half-space soil, respectively.
In case of ascending wave(incident wave), the x and z-component of stiffness matrix K, which
indicates P and SV-wave case, is

(=517 20D
K =2kG -
0 20-rs)l 1

(10)
—s 10
The y-component of stiffness matrix K, which indicates SH-wave case, is
K,=— ksG (i
Decomposing the displacement vector U into the component by incident wave .[-J-;and the component
by radiation wave Uj, Eq,(6) can be described as follows
S =K, Uo +K, U, =— (Kl—- KO) Uo +K( U, + 0, )y (12)
z=0 z=0 2=0 z=0 z=0 z2=0
So, we can write
S| =-F+K U a3)
z=0 z=0
where
F=(K1—K0) U, im0 (14)
It can be seen from Eq.(14) that F depends only on the incident wave. F is caluculated as follows.
In case of incident P and SV-wave, the incident displacement Uy is described by using potential
function ¢ and y, which are associated with P and SV wave motions, as
) a
u = _Z
v=l * }_[ax z][d (15)
0 {iu - a .9
0z i—j— ¥

0z ox

where ugy and ug; are x and z component of incident displacement field U . Potential function ¢ and y are

k
{ ¢ ]= { a exp(krz) } exp it hx) (16)
y r exp(ksz)

where a, 7 are the amplitude of potential function ¢ and y, respectively. Substitute of Eq.(16) into Eq.(15),
and by using Eq.(3), yield
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where :o,( and ug, are x and z component of incident displacement field Uy . F is obtained by the
substitution of Eq.(17) in Eq.(14) as follows.
1= [ —ir —rs ][ @
Fe21%G {_ { } (18)
l—rsl irs s 7

In case of incident SH-wave, the incident component Uy is described as

U=, =B explhs2) exp it kx) (19)
where ugy means y component of incident displacement field Ug , and B is the amplitude of the incident

SH-wave. F obtained in the similar way as P and SV wave case are as follows

F=2ksG B
Caluculation Method of the D_i_splacement in Layered Soil The displacement vector {U} of thin layer
interface and the load vector {P} of thin layer interface is related as follows

(20)

2 2 IT D @1
(AE“+BE+G—"M}{U}={P}
where
)=, ... (Pr=fF,... P N @2
e U e P
where n is the number of thin layers and
(23)

W o TAT S ol AT .
{Uj}—{Ux,Uy,Uz} {Pj}—{Px,Py,Pz} Jj=1,... n+1
Matrix A,B,G and M are given by Kausel and Roesset[4]. When layered soil is subjected to obliquely

incident body wave, we can represent the interface load between half-space and layered soil through
Eq.(13), and so we can set as

P, =-S=F-KU_, §j=0 j=1, . n+l (24)
Eq.(21) is then described as
U, 0
(Aﬁ+Bk+G_m%w+Kyﬂ }={ } @9
n+1 F
where
0
K?zl 0 (26)

K,

K;%¥and F can be assumed as a generalized dashpot effect and external load effect, respectively. {E} can be
obtained by solving matrix equation(25) directly.

Calculation of Impedance Matrix According to Waas at al.[5], we can calculate the stiffness matrix of
the embedded foundation K as follows
(27)
K =K -X°
g g

where Kgf is the stiffness matrix of the foundation which is not excavated, and Kg* is the stiffness matrix of
excavation portion which is calculated by finite element method. 6 X6 impedance matrix is given as

follows
T (28)
KI =N Kg N

where N is rigid body motion influence matrix, and NT is the transposed matrix of N.

Calculation of Foundation Input Motion = Foundation input motion vector
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* * * * * * * (29)
{U }={Ax,Ay’Azl®x,¢y’¢z}
This matrix is calculated by stiffness matrix K, and impedance matrix K as follows.
{U)=K 'NTK_{U} - (T
where {U} is free field ground motion obtained through Eq.(25). {T} is free field stress vector which is
followd by {U} as Kausel et al.[6].

(30)

RESULTS

The effective input motions of rectangular embedded foundation when subjected to three types of
body waves are calculated. Three types of soil model presented as Fig.2 are considered. In all cases, the
effective input motions are normalized by the amplitude of incident body wave.

The sliding input motions Ay* of rectangular embedded foundations of each soil models when
subjected to obliquely incident SH-wave are shown in Fig.3. In case2, the peak value is appeared because
of natural mode of the top layer. The torsional input motions ¢,* by incident SH-wave are shown in Fig.4.
The torsional input motions are zero for vertical incident waves and they increase with the incident angle.

The horizontal sliding input motions A,* and the vertical sliding input motions A,* by obliquely
incident P-wave are shown in Fig.5 and Fig.6. In casel, both of sliding input motions exibit a marked
decrease with frequency. But in case2 and case3, they have peak frequency because of natural mode of the
top layer.

The sliding input motions A,* by SV-wave are presented in Fig.7. When incident angle exceeds the
critical angle, the results are very unstable, so only the results of incident angle 0 degree and incident
angle 22.5 degree are presented.

B =20m
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c)case3 layered half-space model

a) casel uniform half-space model  b)case2 layered half-space model

Fig.2 Model soil for caleulation
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Fig3 Sliding input motion Ay* by SH-wave
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Fig4 Torsional input motion ®z* by SH-wave
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Fig5 Sliding input motion Ax* by P-wave
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Figé Sliding input motion Az* by P-wave
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Fig7 Sliding input motion Ax* by SV-wave

CONCLUSION

This method to calculate the free field respone of the layered soil is comprehensive in formulations,

and matrix operation are easy. When the impedance matrix of the foundation of layered soil is calculated
by the stiffness matrix approach, this method is very effictive to evaluate the foundation input motion.
Also, this calculation method can be applied to the finite element approach successfully[7].
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